精英家教网 > 初中数学 > 题目详情
2.△ABC的周长为24,BC=10,AD是△ABC的中线,且被分得的两个三角形周长的差为2,求AB和AC的长.(用二元一次方程解答)

分析 根据△ABC的周长为24,BC=10可得AB+AC=14,根据三角形的中线为AD可得BD=CD,再由被分得的两个三角形周长的差为2可得AB=AC=2,进而可得方程组$\left\{\begin{array}{l}{AB+AC=24-10}\\{AB-AC=2}\end{array}\right.$,再解即可.

解答 解:由题意得:$\left\{\begin{array}{l}{AB+AC=24-10}\\{AB-AC=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{AB=8}\\{AC=6}\end{array}\right.$,
答:AB长为8,AC的长为6.

点评 此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.一颗树苗的高度h(厘米)与测量的年份n满足如下关系:
年数n高度h(厘米)
第1年100
第2年100+5
第3年100+10
第4年100+15
(1)求第n年时,树苗的高度h;
(2)求第几年时,树苗高度为130厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知点(2,m)和点(-3,n)都在直线y=-3x+1上,试比较m和n的大小(请你至少想出两种判断方法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知⊙O的直径AB=6,直线AC与⊙O相切于点A,线段AC=8,CB与⊙O相交于点M,⊙O的切线MP与AC相交于点P.
(1)求证:PM=PC;
(2)求cos∠PMC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.二次函数y=ax2+$\frac{3}{2}$x+c(a≠0)的图象交x轴于A,B两点,与y轴交于点C,已知A(-1,0),点C(0,2).
(1)求抛物线的解析式,并求出该抛物线的顶点坐标;
(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.求函数y=3x与y=-x+4和y轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.两地的距离是87km,一辆公交车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公交车早20分钟到达B地,求两车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标是(15,8),B2015的坐标是(22015-1,22014).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y=-m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-b2}{4a}$)
(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).
①直接写出:
甲方式购买和包装x吨农产品所需资金为4x万元;
乙方式购买和加工其余农产品所需资金为(132-6x)万元;
②求出w关于x的函数关系式;
③若农产品全部销售该公司共获得了48万元毛利润,求x的值;
④若农产品全部售出,该公司的最小利润是多少.
(2)该公司现有流动资金132万元,若将现有流动资金全部用于经销农产品,
①其中甲方式经销农产品x吨,则总经销量p为-x+14吨(用含x的代数式表示);
②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.

查看答案和解析>>

同步练习册答案