A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;
根据抛物线与x轴的交点个数得到b2-4ac>0,加上a<0,则可对②进行判断;
利用OA=OC可得到A(-c,0),再把A(-c,0)代入y=ax2+bx+c得ac2-bc+c=0,两边除以c则可对③进行判断;
设A(x1,0),B(x2,0),则OA=-x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=$\frac{c}{a}$,于是OA•OB=-$\frac{c}{a}$,则可对④进行判断.
解答 解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,
而a<0,
∴$\frac{{b}^{2}-4ac}{4a}$<0,所以②错误;
∵C(0,c),OA=OC,
∴A(-c,0),
把A(-c,0)代入y=ax2+bx+c得ac2-bc+c=0,
∴ac-b+1=0,所以③正确;
设A(x1,0),B(x2,0),
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
∴x1•x2=$\frac{c}{a}$,
∴OA•OB=-$\frac{c}{a}$,所以④正确.
故选:B.
点评 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | EF∥BC | B. | EF=AE | C. | BE=CF | D. | AF=BC |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{10}{x}$-50=$\frac{10}{2.5x}$-5 | B. | $\frac{10}{x}$+$\frac{50}{60}$=$\frac{10}{2.5x}$-$\frac{5}{60}$ | ||
C. | $\frac{10}{x}$+$\frac{50}{60}$=$\frac{10}{2.5x}$+$\frac{5}{60}$ | D. | $\frac{10}{x}$-$\frac{50}{60}$=$\frac{10}{2.5x}$-$\frac{5}{60}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com