精英家教网 > 初中数学 > 题目详情
17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C,且OA=OC,则下列结论:①abc<0;②$\frac{{b}^{2}-4ac}{4a}$>0;③ac-b+1=0;④OA•OB=-$\frac{c}{a}$.其中正确结论的个数是(  )
A.4B.3C.2D.1

分析 由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;
根据抛物线与x轴的交点个数得到b2-4ac>0,加上a<0,则可对②进行判断;
利用OA=OC可得到A(-c,0),再把A(-c,0)代入y=ax2+bx+c得ac2-bc+c=0,两边除以c则可对③进行判断;
设A(x1,0),B(x2,0),则OA=-x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=$\frac{c}{a}$,于是OA•OB=-$\frac{c}{a}$,则可对④进行判断.

解答 解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,
而a<0,
∴$\frac{{b}^{2}-4ac}{4a}$<0,所以②错误;
∵C(0,c),OA=OC,
∴A(-c,0),
把A(-c,0)代入y=ax2+bx+c得ac2-bc+c=0,
∴ac-b+1=0,所以③正确;
设A(x1,0),B(x2,0),
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
∴x1•x2=$\frac{c}{a}$,
∴OA•OB=-$\frac{c}{a}$,所以④正确.
故选:B.

点评 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.命题“邻补角相等”的题设是两个角互为邻补角,结论是这两个角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,平行四边形ABCD中,点E,F在直线AC上(点E在F左侧,)BE∥DF
(1)求证:四边形BEDF是平行四边形;
(2)若AB⊥AC,AB=4,BC=2 $\sqrt{13}$,当四边形BEDF为矩形时,求线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)如图1,已知a∥b,a∥c,那么b与c平行吗?为什么?
(2)思考:根据本题,你能得出什么结论?如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
(3)利用上述结论,回答下列问题:
①如图2(1),AB∥CD,则∠A+∠C+∠E=360°°;
②在图2(2)(3)中,直接写出∠A、∠E、∠C之间的关系.
答:在图2(2)中∠E=∠A+∠C,在图2(3)中∠A=∠C+∠E.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,将平行四边形ABCD折叠,使顶点D落在AB边上的点E处,折痕为AF,下列说法中不正确的是(  )
A.EF∥BCB.EF=AEC.BE=CFD.AF=BC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x=2$\sqrt{3}$,3$\sqrt{3}$或6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,等边△ABC和等边△ECD的边长相等,BC与CD两边在同一直线上,请根据如下要求,使用无刻度的直尺,通过连线的方式画图.
(1)在图1中画出一个直角三角形.
(2)在图2中过点C作BD的垂线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.2016特步欢乐跑•中国(重庆站)10公里锦标赛于5月8日上午在重庆巴南区巴滨路圆满举行,若专业队员甲的速度是业余队员乙的速度的2.5倍,比赛开始后甲先出发5分钟,到达终点50分钟后乙才到.若设乙的速度为x千米/小时,则根据题意列得方程为(  )
A.$\frac{10}{x}$-50=$\frac{10}{2.5x}$-5B.$\frac{10}{x}$+$\frac{50}{60}$=$\frac{10}{2.5x}$-$\frac{5}{60}$
C.$\frac{10}{x}$+$\frac{50}{60}$=$\frac{10}{2.5x}$+$\frac{5}{60}$D.$\frac{10}{x}$-$\frac{50}{60}$=$\frac{10}{2.5x}$-$\frac{5}{60}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E,AB=10cm,AC=6cm,△BDE的周长为12 cm.

查看答案和解析>>

同步练习册答案