精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.
(1)求证:△CBE∽△AFB;
(2)当
BE
FB
=
3
4
时,求
CB
AD
的值.
分析:(1)根据中位线的判定得出ED是△ABF的中位线,再利用相似三角形的判定得出△CBE∽△AFB;
(2)利用相似三角形的性质即可得出
CB
AD
的值.
解答:(1)证明:∵AE=EB,AD=DF,
∴ED是△ABF的中位线,
∴ED∥BF,
∴∠CEB=∠ABF,
又∠C=∠A,
∴△CBE∽△AFB.

(2)解:由(1)知,△CBE∽△AFB,
CB
AF
=
BE
FB
=
3
4

又AF=2AD,
CB
AD
=
3
2
点评:此题主要考查了相似三角形的判定与性质,根据已知得出ED∥BF是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O中,弦AB,CD相交于P,且四边形OEPF是正方形,连接OP.若⊙O的半径为5cm,OP=3
2
cm
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O中,弦AB⊥CD于点E.若ON⊥BD于N,求证:ON=
12
AC.

查看答案和解析>>

同步练习册答案