精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,CD⊥AB,垂足为D.下列条件中,能证明△ABC是直角三角形的有____________(多选、错选不得分).

①∠A+∠B=90°;②;③;④

【答案】①②④

【解析】根据三角形内角和是180°、勾股定理、余弦函数、相似三角形的性质等来逐一判断各结论是否符合题意即可.

解:①∵三角形内角和是180°,由∠A+∠B=90°

∴∠ACB=180°-∠A+∠B=180°-90°=90°

∴△ABC是直角三角形.故选项正确.

②ABACBC分别为△ABC三个边,由勾股定理的逆定理可知,正确.

题目所给的比例线段不是△ACB△CDB的对应边,且夹角不相等,无法证明△ACB△CDB相似,也就不能得到∠ACB是直角,故错误;

△ABC是直角三角形,已知CD⊥AB

∵CD2=AD?BD,(即=

∴△ACD∽△CBD

∴∠ACD=∠B

∴∠ACB=∠ACD+∠DCB=∠B+∠DCB=90°

△ABC是直角三角形

故选项正确;

故正确的结论为①②④

本题考查直角三角形的性质和勾股定理等知识的应用,只要利用直角三角形的这些特性加以判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以下列哪组数为边长,可以得到直角三角形的是(  )

A. 9,16,25 B. 8,15,17 C. 6,8,14 D. 10,12,13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点,另一条直角边恒过点

第三步:在移动过程中,当三角板的直角顶点落在轴上点处时,点的横坐标即为该方程的一个实数根(如图1);

第四步:调整三角板直角顶点的位置,当它落在轴上另—点处时,点的横坐标即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点(请保留作直角三角板两条直角边的痕迹);

(2)结合图1,请证明“第三步”操作得到的就是方程的一个实数根;

(3)上述操作的关键是定两个固定点的位置,若要以此方找到一元二次方程的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对一般地,当之间满足怎样的关系时,点就是符合要求的—对固定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】与点P(2,-5)关于x轴对称的点是(  )

A. (-2,-5) B. (2,-5) C. (-2,5) D. (2,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他至少答对了_________题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.

类别

频数(人数)

频率

小说

0.5

戏剧

4

散文

10

0.25

其他

6

合计

1

根据图表提供的信息,解答下列问题:

(1)八年级一班有多少名学生?

(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;

(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC∽△DEF,若△ABC与△DEF的相似比为23,△ABC的面积为40,则△DEF的面积为(  )

A.60B.70C.80D.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc,其自变量x与函数y的对应值如下表:

x

5

4

3

2

1

0

y

4

0

2

2

0

4

则下列说法正确的是( )

A. 抛物线的开口向下 B. x>-3时,yx的增大而增大

C. 二次函数的最小值是-2 D. 抛物线的对称轴是直线x=-.

查看答案和解析>>

同步练习册答案