14£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýµãA£¨-1£¬0£©ºÍµãB£¨3£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³öµãDµÄ×ø±ê£»
£¨2£©Èçͼ1£¬Ö±Ïßx=2ÓëxÖá½»ÓÚµãN£¬ÓëÖ±ÏßAD½»ÓÚµãG£¬µãPÊÇÖ±Ïßx=2ÉϵÄÒ»¶¯µã£¬µ±µãPµ½Ö±ÏßADµÄ¾àÀëµÈÓÚµãPµ½xÖáµÄ¾àÀëʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Èçͼ2£¬Ö±Ïßy=-x+m¾­¹ýµãA£¬½»yÖáÓÚµãC£¬ÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃS¡÷CDA=2S¡÷ACM£¿Èô´æÔÚ£¬ÇóµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÈ·¶¨Å×ÎïÏßÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬3£©£¬È»ºóÀûÓý»µãʽÇóÅ×ÎïÏß½âÎöʽ£»ÔٰѽâÎöʽÅä³É¶¥µãʽ¼´¿ÉµÃµ½Dµã×ø±ê£»
£¨2£©¹ýP×÷PH¡ÍADÓÚµãH£¬Èçͼ1£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßADµÄ½âÎöʽΪy=2x+2£¬ÔÙÈ·¶¨G£¨2£¬6£©£¬ÉèP£¨2£¬t£©£¬ÔòPN=PH=|t|£¬GP=6-t£¬Óù´¹É¶¨Àí¼ÆËã³öAG=$\sqrt{5}$£¬½Ó×ÅÖ¤Ã÷Rt¡÷GPH¡×Rt¡÷GAN£¬ÀûÓÃÏàËƱȵõ½tµÄ·½³Ì£¨6-t£©£º3$\sqrt{5}$=|t|£º3£¬È»ºó½â·½³ÌÇó³öt¼´¿ÉµÃµ½Pµã×ø±ê£»
£¨3£©ÏÈÈ·¶¨Ö±ÏßACµÄ½âÎöʽΪy=-x-1£¬¹ýµãD×÷DE¡ÎAC£¬½»yÖáÓÚµãE£¬Èçͼ2£¬ÀûÓÃÁ½Ö±ÏßƽÐÐÎÊÌâ¿ÉÇó³öÖ±ÏßDEµÄ½âÎöʽΪy=-x+5£¬ÔòE£¨0£¬5£©£¬ÓÚÊÇ¿ÉÈ·¶¨ECµÄÖеãFµÄ×ø±êΪ£¨0£¬2£©£¬ÔÙ¹ýµãF×÷ACµÄƽÐÐÏß½»Å×ÎïÏßÓÚM£¬Èçͼ2£¬¸ù¾ÝƽÐÐÏßÖ®¼äµÄ¾àÀë¿ÉÅжϵãMµ½Ö±ÏßACµÄ¾àÀëµÈÓÚµãDµ½ACµÄ¾àÀëµÄÒ»°ë£¬ËùÒÔS¡÷CDA=2S¡÷ACM£¬½Ó×ÅÈ·¶¨Ö±ÏßFMµÄ½âÎöʽΪy=-x+2£¬È»ºó½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+2}\\{y=-{x}^{2}+2x+3}\end{array}\right.$¼´¿ÉµÃµ½Âú×ãÌõ¼þµÄMµãµÄ×ø±ê£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=ax2+bx+3=3£¬ÔòÅ×ÎïÏßÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬3£©£¬
ÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x+1£©£¨x-3£©£¬
°Ñ£¨0£¬3£©´úÈëµÃa•1•£¨-3£©=3£¬½âµÃa=-1£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=-£¨x+1£©£¨x-3£©£¬¼´y=-x2+2x+3£»
y=-£¨x-1£©2+4£¬ÔòD£¨1£¬4£©£»
£¨2£©¹ýP×÷PH¡ÍADÓÚµãH£¬Èçͼ1£¬
ÉèÖ±ÏßADµÄ½âÎöʽΪy=kx+p£¬°ÑA£¨-1£¬0£©£¬D£¨1£¬4£©´úÈëµÃ$\left\{\begin{array}{l}{-k+b=0}\\{k+b=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=2}\end{array}\right.$£¬
ËùÒÔÖ±ÏßADµÄ½âÎöʽΪy=2x+2£¬
µ±x=2ʱ£¬y=2x+2=6£¬ÔòG£¨2£¬6£©£¬
ÉèP£¨2£¬t£©£¬ÔòPN=PH=|t|£¬GP=6-t£¬
ÔÚRt¡÷ANGÖУ¬AN=3£¬GN=6£¬
¡àAG=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$£¬
¡ß¡ÏPGH=¡ÏAGN£¬
¡àRt¡÷GPH¡×Rt¡÷GAN£¬
¡àGP£ºAG=PH£ºAN£¬¼´£¨6-t£©£º3$\sqrt{5}$=|t|£º3£¬
½âµÃt1=$\frac{3\sqrt{5}-3}{2}$£¬t2=$\frac{-3\sqrt{5}-3}{2}$£¬
¡àPµã×ø±êΪ£¨2£¬$\frac{3\sqrt{5}-3}{2}$£©»ò£¨2£¬$\frac{-3\sqrt{5}-3}{2}$£©£»
£¨3£©´æÔÚ£®
°ÑA£¨-1£¬0£©´úÈëy=-x+mµÃ1+m=0£¬½âµÃm=1£¬
¡ßÖ±ÏßACµÄ½âÎöʽΪy=-x-1£¬
¹ýµãD×÷DE¡ÎAC£¬½»yÖáÓÚµãE£¬Èçͼ2£¬
ÉèÖ±ÏßDEµÄ½âÎöʽΪy=-x+n£¬
°ÑD£¨1£¬4£©´úÈëµÃ-1+n=4£¬½âµÃn=5£¬
¡àÖ±ÏßDEµÄ½âÎöʽΪy=-x+5£¬
µ±x=0ʱ£¬y=-x+5=5£¬ÔòE£¨0£¬5£©£¬
¡àECµÄÖеãFµÄ×ø±êΪ£¨0£¬2£©£¬
¹ýµãF×÷ACµÄƽÐÐÏß½»Å×ÎïÏßÓÚM£¬Èçͼ2£¬ÔòµãMµ½Ö±ÏßACµÄ¾àÀëµÈÓÚµãDµ½ACµÄ¾àÀëµÄÒ»°ë£¬
¡àS¡÷CDA=2S¡÷ACM£¬
ÉèÖ±ÏßFMµÄ½âÎöʽΪy=-x+q£¬
°ÑF£¨0£¬2£©´úÈëµÃq=2£¬
¡àÖ±ÏßFMµÄ½âÎöʽΪy=-x+2£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+2}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{3-\sqrt{13}}{2}}\\{y=\frac{1+\sqrt{13}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{3+\sqrt{13}}{2}}\\{y=\frac{1-\sqrt{13}}{2}}\end{array}\right.$£¬
¡àÂú×ãÌõ¼þµÄMµãµÄ×ø±êΪ£¨$\frac{3-\sqrt{13}}{2}$£¬$\frac{1+\sqrt{13}}{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬»áÇóÒ»´Îº¯ÊýÓë¶þ´Îº¯ÊýµÄ½»µã×ø±ê£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£»»áÀûÓù´¹É¶¨ÀíºÍÏàËƱȼÆËãÏ߶εij¤£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô½«´úÊýʽ£¨x-m£©£¨2x+1£©Õ¹¿ªºó²»º¬xµÄÒ»´ÎÏÔòmµÄֵΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ñ§Éú×é֯ȫÌåѧÉú²Î¼ÓÁË¡°×ß³öУÃÅ£¬·þÎñÉç»á¡±µÄ»î¶¯£¬°ËÄ꼶һ°àͬѧͳ¼ÆÁ˸ÃÌì±¾°àѧÉú´òɨ½ÖµÀ£¬È¥¾´ÀÏÔº·þÎñºÍµ½ÉçÇøÎÄÒÕÑݳöµÄÈËÊý£¬²¢×öÁËÈçÏÂÖ±·½Í¼ºÍÉÈÐÎͳ¼Æͼ£®Çë¸ù¾Ý¸Ã°àͬѧËù×÷µÄÁ½¸öͼÐνâ´ð£º
£¨1£©°ËÄ꼶һ°àÓжàÉÙÃûѧÉú£¿
£¨2£©ÇóÈ¥¾´ÀÏÔº·þÎñµÄѧÉúÈËÊý£¬²¢²¹È«Ö±·½Í¼µÄ¿Õȱ²¿·Ö£®
£¨3£©Èô°ËÄ꼶ÓÐ800ÃûѧÉú£¬¹À¼Æ¸ÃÄ꼶ȥ¾´ÀÏÔºµÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®±±³½Ã³Ò×¹«Ë¾Ã¿ÌìÓÃÒ»Á¾ÅäËÍʳƷÀàµÄ±£ÏʳµºÍÒ»Á¾ÅäËÍÆäËûÉÌÆ·µÄÏäʽ»õ³µÎª±£Áú²Ö¡¢ÎÖ¶ûÂê¡¢¼ÒÀÖ¸£Èý¼Ò³¬ÊÐÅäËÍÉÌÆ·£¬¹«Ë¾¹æ¶¨£¬Ã¿´ÎËÍÍê»õÎïºó¶¼Ð谴ԭ··µ»ØÅä»õÖÐÐÄ£¬Ïäʽ»õ³µÓÚÔ糿7£º00´ÓÅä»õÖÐÐijö·¢£¬ÒÔ40km/hµÄËÙ¶ÈÇ°Íù¸÷¸ö³¬ÊÐËÍ»õ£¬Ïäʽ»õ³µÔÚÇ°ÃæÁ½¸ö³¬ÊÐж»õʱ¸÷Í£Áô°ëСʱ£¬ÓÉÓÚ±£Ïʳµ³ö·¢±ÈÏäʽ»õ³µÔ磬µ±Ïäʽ»õ³µ»¹ÔÚËÍ»õ;ÖÐʱ£¬±£ÏʳµÒѾ­¿ªÊ¼·µ³Ì£¬ÆäËÙ¶Èʱ50km/h£¬µ±±£ÏʳµÉÏÎç11£º00·µ»ØÅä»õÖÐÐÄʱ£¬Ïäʽ»õ³µ¸ÕжÍê»õ×¼±¸·µ»ØÅä»õÖÐÐÄ£¬Í¼1ʱÁ½Á¾³µµÄËÍ»õ·³ÌʾÒâͼ£¬Í¼2ÖеÄͼÏó·Ö±ð±íʾÁ½Á½³µÀëÅä»õÖÐÐĵÄ·³Ìs£¨km£©ÓëÏäʽ»õ³µÐÐÊ»µÄʱ¼ät£¨h£©Ö®¼äµÄº¯Êý¹Øϵ£¬Çë½áºÏͼÖÐÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣮
£¨1£©Çëд³öͼ2ÖÐAËù´ú±íµÄʵ¼ÊÒâÒ壻
£¨2£©Çó±£ÏʳµÊǼ¸Ê±¼¸·Ö¿ªÊ¼·µ³ÌµÄ£¿
£¨3£©ÇóÏäʽ»õ³µËÍÍêÈý¼Ò³¬Êв¢·µ»ØÅä»õÖÐÐÄ×ܹ²ÓÃÁ˶೤ʱ¼ä£¿
£¨4£©Á½³µÔÚ;ÖÐÏàÓöµÄʱ¼äÊǼ¸Ê±¼¸·Ö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Á½¸öʵÊýÔÚÊýÖáÉ϶ÔÓ¦µãµÄλÖÃÈçͼËùʾ£¬Ôòa£¾b£®£¨Ìî¡°£¾¡±¡¢¡°£¼¡±»ò¡°=¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁе÷²éÖУ¬ÊÊÒ˲ÉÓÃÆղ鷽ʽµÄÊÇ£¨¡¡¡¡£©
A£®µ÷²éÊг¡ÉÏÅ£Ä̵ÄÖÊÁ¿Çé¿öB£®µ÷²éÈ«¹úÖÐСѧÉúµÄÊÓÁ¦Çé¿ö
C£®µ÷²éijƷÅƵÆÅݵÄʹÓÃÊÙÃüD£®µ÷²éº½Ìì·É»úÁ㲿¼þÊÇ·ñºÏ¸ñ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÓÃÒ»ÕŰ뾶Ϊ20µÄÉÈÐÎֽƬÖƳÉÒ»¸öԲ׶£¨½Ó·ìºöÂÔ²»¼Æ£©£¬Èç¹ûԲ׶µ×ÃæµÄ°ë¾¶Îª10£¬ÄÇôÉÈÐεÄÔ²ÐĽÇΪ£¨¡¡¡¡£©
A£®60¡ãB£®90¡ãC£®135¡ãD£®180¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èô¹ØÓÚxµÄ·½³Ìx2+3x+a=0ÓÐÒ»¸ö¸ùΪ-1£¬ÔòÁíÒ»¸ö¸ùΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨1£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{1}{x-y}$¡Â£¨$\frac{1}{y}$-$\frac{1}{x}$£©£¬ÆäÖÐx=$\sqrt{3}$+$\sqrt{2}$£¬y=$\sqrt{3}$-$\sqrt{2}$£®
£¨2£©ÔÚÊýÖáÉÏ»­³ö±íʾ$\sqrt{30}$µÄµã£® £¨ÒªÇó»­³ö×÷ͼºÛ¼££©

£¨3£©Èçͼ£¬×ó±ßÊÇÓÉÁ½¸ö±ß³¤Îª2µÄСÕý·½ÐÎ×é³É£¬ÑØ×ÅͼÖÐÐéÏß¼ô¿ª£¬¿ÉÒÔÆ´³ÉÓұߵĴóÕý·½ÐΣ¬Çó´óÕý·½Ðεı߳¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸