精英家教网 > 初中数学 > 题目详情

如图,已知:正方形ABCD,△BCE是等边三角形,求∠AED.

答案:
解析:

由于等边△BCE中,∠EBC=,而正方形ABCD中,∠ABC=,且AB=BC=BE,所以∠AEB=,用同样的方法可得∠DEC=,所以∠AED=-∠AEB-∠BEC-∠DEC=


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD中,P为BC上的一点,E是边BC延长线上一点,连接AP过点P作PF⊥精英家教网AP,与∠DCE的平分线CF,相交于点F,连接AF,与边CD相交于点G,连接PG.
(1)求证:①∠PAB=∠FPC;②AP=FP;
(2)试判断PB、DG、PC,这三条线段存在怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,已知在正方形ABCD中,P是BC上的一点,且AP=DP.求证:P是BC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林模拟)如图,已知,正方形ABCD的边长为1,以BC为对角线作第一个正方形BECO1,再以BE边为对角线作第二个正方形EFBO2,如此作下去,…则所作的第n正方形的面积Sn=
1
2n
1
2n

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•仓山区模拟)如图,已知在正方形ABCD网格中,每个小方格都是边长为1的正方形,E是边DC上的一个网格的格点.
(1)
DE
EB
的值是
1
5
1
5

(2)按要求画图:在BC边长找出格点F,连接AF,使AF⊥BE;
(3)在(2)的条件下,连接EF,求cos∠AFE的值.(结果保留根式)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•郑州模拟)如图,已知在正方形ABCD中,EF分别是AB,BC上的点,若有AE+CF=EF,请你猜想∠EDF的度数,并说明理由.

查看答案和解析>>

同步练习册答案