精英家教网 > 初中数学 > 题目详情

如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。

解:(1)∵抛物线的对称轴为,∴ON=3。
,∴NM=9。∴M(-3,-9)。
∴设抛物线C的解析式为
∵抛物线C经过原点,∴,即
∴抛物线C的解析式为,即
(2)①∵抛物线由抛物线C绕原点O旋转1800得到,
∴抛物线与抛物线C关于原点O对称。∴抛物线的顶点坐标为(3,9)。
∴抛物线的解析式为,即
∵令y=0,得x=0或x=6,∴A(6,0)。
又∵B为抛物线上横坐标为2的点,∴令x=2,得y=8。∴B(2,8)。
设直线AB的解析式为y=kx+b,
,解得:
∴直线AB的解析式为
∵P为线段AB上一动点,∴设P

APD面积的最大值为9。
②如图,分别过E2、F2作x轴的垂线,垂足分别为G、H,

易求直线OB:,由①直线AB:
时,E1在OB上,F1在AB上,
OE=t,EE1=4t,EG=,OG=,GE2=2t;
OF=,FF1=2t,HF=,OH=,HF2= t。
∴E(t,0),E1(t,4t),E2,2t),F(6-t,0),F1,2t),F2,t)。
i)若EE1与FF1在同一直线上,由t=6-t,t=3,不符合
ii)若EE2与F1F2在同一直线上,易求得EE2,将F1,2t)代入,得,解得
iii)若E1E2与FF2在同一直线上,易求得E1E2,将F(,0)代入,得
时,E1、F1都在AB上,
OE=t,EE1=,EG=,OG=,GE2=
OF=,FF1=2t,HF=,OH=,HF2= t。
∴E(t,0),E1(t,),E2),F(,0),F1,2t),F2,t)。
i)若EE1与FF1在同一直线上,由t=6-t,t=3;
ii)若EE2与F1F2在同一直线上,易求得EE2,将F1,2t)代入,得,解得,不符合
iii)E1E2与FF2已在时在同一直线上,故当时E1E2与FF2不可能在同一直线上。
时,由上面讨论的结果,△AE1E2的一边与△AF1F2的某一边不可能在同一直线上。
综上所述,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知二次函数图象的顶点是(-1,2),且过点(0,).

(1)求二次函数的表达式,并在图中画出它的图象;
(2)判断点(2,)是否在该二次函数图象上;并指出当取何值时,

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与直线交于点A 、B,与y轴交于点C.

(1)求点A、B的坐标;
(2)若点P是直线x=1上一点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,要设计一个矩形的花坛,花坛长60 m,宽40 m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10 m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)

(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36 m2时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为   m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)

(1)求该抛物线的解析式;
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值;
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C

(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.
(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案