精英家教网 > 初中数学 > 题目详情

【题目】等边ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AHBK交于点F,

(1)如图1,求∠AFB的度数;

(2)如图2,连接FC,若∠BFC=90°,点G为边 AC上一点,且满足∠GFC=30°,求证:AGBG;

【答案】(1) ;(2)证明见解析

【解析】

1)易得: 即可求出的度数.

2)BF上取M使AF=FM,连MC延长FGMCN,可得△AFM是等边三角形,可证△AFB≌△AMC,再证△AGF≌△CGN,可得的中点,可以根据等腰三角形三线合一的性质解答即可.

解:(1)在等边ABC中:AB=AC,BAK=C=60°

在△ABK和△CAH中,

(2)BF上取M使AF=FM,连MC延长FGMCN,

△AFM是等边三角形

AF=AM, ∠FAM=60°

又∵∠BAC=60°

∠BAF=∠CAM

又∵AB=AC

△AFB≌△AMC

∴∠AMC=∠AFC= 120°,

△AFM为等边三角形,

∴∠AMB=∠BMC=60°,

∵∠BFC=90°

∴∠MFC=90°∠NFC=30°,

∴△FMN为等边三角形,且FN=NC,

∴NC=FN=FM=AF

∴△AGF≌△CGN,

∴AG=GC

又∵AB=BC

∴BG⊥AC,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图,对称轴是直线x=-,有下列结论:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=2,C=D,求证:∠A=F.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是(  )

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,CAB上一点,点DE分别在AB两侧,ADBE,且ADBCBEAC

1)求证:CDCE

2)连接DE,交AB于点F,猜想BEF的形状,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分线BEAC的延长线于点E.

(1)求∠CBE的度数;

(2)过点DDFBE,交AC的延长线于点F,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市从 2018 1 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.

(1)求 A、B 两种型号电动自行车的进货单价;

(2)若 A 型电动自行车每辆售价为 2800 ,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y m 之间的函数关系式;

(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现场学习题:

问题背景:

ABC中,ABBCAC三边的长分别为,求这个三角形的面积.

小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求ABC的高,而借用网格就能计算出它的面积.

1)请你将ABC的面积直接填写在横线上.

思维拓展:

2)我们把上述求ABC面积的方法叫做构图法,若ABC三边的长分别为a2aaa0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的ABC,并求出它的面积是:

探索创新:

3)若ABC三边的长分别为m0n0m≠n),请运用构图法在图3指定区域内画出示意图,并求出ABC的面积为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,直线l:y=x﹣x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=

(1)求抛物线的解析式;

(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PBx轴于点B,PCy轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PEPF;

(3)若(2)中的点P坐标为(6,2),点Ex轴上的点,点Fy轴上的点,当PEPF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案