【题目】在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AB、CD、AD、BC于点E、F、G、H
(感知)如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=S四边形ABCD,所以S四边形AEOG=S正方形ABCD(不要求证明);
(拓展)如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);
(探究)如图③,若四边形ABCD是平行四边形,且S四边形AEOG=SABCD,若AB=3,AD=5,BE=1,则AG=______.
【答案】【拓展】AG=;【探究】
【解析】
拓展:如图②,作高线OM和ON,根据S△AOB=S矩形ABCD,可得S△AOB=S四边形AEOG,所以△BOE和△AOG的面积相等,根据面积公式列式可得AG的长;
探究:如图③,同理:过O作QM⊥AB,PN⊥AD,先根据平行四边形面积可得OM和ON的比,同理可得S△BOE=S△AOG,根据面积公式可计算AG的长.
拓展:如图②,过O作OM⊥AB于M,ON⊥AD于N,
∵S△AOB=S矩形ABCD,
S四边形AEOG=,
∴S△AOB=S四边形AEOG,
∵S△BOE===mb,
S△AOG=AGON=AG=AGa,
∴mb=AGa,
∴AG=;
探究:
如图③,过O作QM⊥AB,PN⊥AD,
则MQ=2OM,PN=2ON,
∵SABCD=ABMQ=ADPN,
∴3×2OM=5×2ON,
∴=,
∵S△AOB=SABCD,
S四边形AEOG=SABCD,
∴S△AOB=S四边形AEOG,
∵S△BOE==×1×OM,
S△AOG=AGON,
∴×1×OM=AGON,
OM=AGON,
=AG=,
∴AG=;
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于、两点,交轴于点,点关于抛物线对称轴的对称点为点.
(1)求线段的长度;
(2)为线段上方抛物线上的任意一点,点为,一动点从点出发运动到轴上的点,再沿轴运动到点.当四边形的面积最大时,求的最小值;
(3)将线段沿轴向右平移,设平移后的线段为,直至平行于轴(点为第2小问中符合题意的点),连接直线.将绕着旋转,设旋转后、的对应点分别为、,在旋转过程中直线与轴交于点,与线段交于点.当是以为腰的等腰三角形时,写出的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(﹣1,2)、B(3,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;
(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初二开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:
(1)根据图示填写下表:
班级 | 中位数(分) | 众数(分) | 平均数(分) |
爱国班 | 85 | ||
求知班 | 100 | 85 |
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
(3)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.
(1)求两次抽得相同花色的概率;
(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M是Rt△ABC的斜边AB的中点,连接CM,作线段CM的垂直平分线,分别交边CB和CA的延长线于点D、E,若∠C=90°,AB=20,tanB= ,则DE=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com