精英家教网 > 初中数学 > 题目详情
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.
求证:

【答案】分析:连接ED,证明△ACG∽△DEG,利用相似比和合比性质求解即可.
解答:证明:连接ED.
∵D、E分别是边BC、AB的中点,
∴DE∥AC,
∴∠ACG=∠DEG,∠GAC=∠GDE,
∴△ACG∽△DEG.

=

点评:主要考查了相似三角形的性质和中位线定理.利用相似比和中位线定理求出相似比,从而利用比例的基本性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案