精英家教网 > 初中数学 > 题目详情

【题目】1)问题发现

如图①,在RtABC中,∠A90°ABkAC,点DAB上一点,DEBC

填空:BDCE的数量关系为   ;位置关系为   

2)类比探究

如图②,将ADE绕着点A顺时针旋转,旋转角为αα≤90°),连接BDCE,请问(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

3)拓展延伸

在(2)的条件下,将ADE绕点A顺时针旋转,旋转角为α,直线BDCE交于点F,若AC1AB,当∠ACE15°时,请直接写出BF的长.

【答案】1)问题发现:BDkCEBDCE;(2)类比探究:(1)中的结论还成立,理由见解析;(3)拓展延伸:BF的长为

【解析】

1)由平行线分线段成比例可得,由已知条件即可得BD=kEC;由∠A=90°即可得出BDCE
2)通过证明△ABD∽△ACE,可得=k,即可得BD=kEC;再证出∠BFC=90°,即可得出BDCE
3)分两种情况讨论,由相似三角形的性质可得∠ACE=ABD,即可证∠BFC=90°,由直角三角形的性质和勾股定理可求BF的值.

1)问题发现:

解:∵DEBC

ABkAC

BDkCE

∵∠A90°

ABAC

BDCE

故答案为:BDkCEBDCE

2)类比探究:

解:(1)中的结论还成立,理由如下:

延长CEBDF,如图②所示:

由旋转的性质可知,∠BAD=∠CAE

DEBC

∴△ABD∽△ACE

k,∠ABD=∠ACE

BDkEC

∵∠CBF+BCF=∠ABD+ABC+BCF=∠ACE+BCF+ABC=∠ACB+ABC90°

∴∠BFC90°

BDCE

3)拓展延伸:

解:由旋转的性质可知:∠BAD=∠CAE

∴△ABD∽△ACE

∴∠ACE15°=∠ABD

∵∠ABC+ACB90°

∴∠FBC+FCB90°

∴∠BFC90°

∵∠BAC90°AC1AB

tanABC

∴∠ABC30°

∴∠ACB60°

分两种情况:

α≤90°时,如图②所示:

∴在RtBAC中,∠ABC30°AC1

BC2AC2

∵在RtBFC中,∠CBF30°+15°45°BC2

BFCF

α90°时,如图③所示:

CFa,在BF上取点G,使∠BCG15°

∵∠BCF60°+15°75°,∠CBF=∠ABC﹣∠ABD30°15°15°

∴∠CFB90°

∴∠GCF60°,∠CBF=∠BCG

CGBG2aGFa

BFBG+GF=(2+a

CF2+BF2BC2

a2+2a+a 222

解得:a22

a

BF=(2+

即:BF的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O直径,半径OCAB,连接ACCAB的平分线AD分别交OC于点E,交于点D,连接CDOD,以下三个结论:ACODAC2CD线段CDCECO的比例中项,其中所有正确结论的序号是(

A.①②B.②③

C.①③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+c的对称轴是x=﹣1,且过点(0),有下列结论:①abc0;②a2b+4c0;③25a+4c10b;④3b+2c0;⑤ab≥mamb);其中所有错误的结论有(  )个.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A11),B40),C44).

1)按下列要求作图:

①将△ABC向左平移4个单位,得到△A1B1C1

②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2

2)求点C1在旋转过程中所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《中国诗词大会》以赏中华诗词,寻文化基因、品生活之美为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵,自开播以来深受广大师生的喜爱,某中学为了解学校学生的诗词水平,从八、九年级各随机抽取了20名学生进行了测试,并将八、九年级测试成绩(百分制,单位:分)整理如下:

收集数据

八年级 93 92 84 55 85 82 66 74 88 67 87 87 67 61 87 61 78 57 72 75

九年级 68 66 79 92 86 87 61 86 90 83 90 78 70 67 53 79 86 71 61 89

整理数据按如下分数段整理数据,并补全表格:

测试成绩x(分)
年级

50≤x60

60≤x70

70≤x80

80≤x90

90≤x≤100

2

4

1

5

5

6

3

说明:测试成绩x(分),其中x≥80为优秀,70≤x80为良好,60≤x70为合格,0≤x60为不合格)

分析数据补全下列表格中的统计量:

年级

平均数

中位数

众数

75.9

76.5

77.1

79

86

得出结论

1)在此次测试中,有位同学的成绩是78span>分,在他所在的年级属于中等偏上,则这位同学属于哪个年级?

2)若九年级有800名学生,估计九年级诗词水平达到优秀的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为解方程(x2﹣12﹣5x2﹣1+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则

x2﹣1=y2,原方程化为y2﹣5y+4=0

解得y1=1y2=4

y=1时,x21=1x2=2x=±

y=4时,x21=4x2=5x=±

∴原方程的解为x1=x2=x3=x4=

解答问题:

1)填空:在由原方程得到方程①的过程中,利用   法达到了降次的目的,体现了   的数学思想.

2)解方程:x4﹣x2﹣6=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴的两个交点分别为,与轴相交于点

1)求抛物线的表达式;

2)联结,求的正切值;

3)点在抛物线上,且,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场以每件元的价格购进一种商品,试销中发现这种商品每天的销售量(件)与每件的销售价(元)满足一次函数关系.

1)求商场销售这种商品每天的销售利润 (元)与每件销售价(元)之间的函数关系式.

2)商场每天销售这种商品的销售利润能否达到元?如果能,求出此时的销售价格;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D的中点,作DEAC,交AB的延长线于点F,连接DA

(1)求证:EF为半圆O的切线;

(2)若DADF=6,求阴影区域的面积.(结果保留根号和π)

查看答案和解析>>

同步练习册答案