【题目】如图,已知AM∥BN,∠B=40°,点P是BN上一动点(与点B不重合).AC、AD分别平分∠BAP和∠PAM,交射线BN于点C、D.
(1)求∠CAD的度数;
(2)当点P运动到当∠ACB=∠BAD时,求∠BAC的度数.
【答案】(1)∠CAD=70°;(2)=35°
【解析】
(1)由平行线的性质,角平分线的定义,角的和差求得∠CAD的度数为70°;
(2)由平行线的性质,角平分线的定义,已知等量关系求得∠BAC的度数为35°.
如图所示:
(1)∵AM∥BN,
∴∠B+∠BAM=180°,
又∵∠B=40°,
∴∠BAM=180°﹣∠B=140°,
又∵AC、AD分别平分∠BAP和∠PAM,
∴∠CAP=∠BAP,∠PAD=∠PAM,
∴∠CAP+∠PAD=(∠BAP+∠PAM)
=∠BAM
=
=70°
又∵∠CAD=∠CAP+∠PAD,
∴∠CAD=70°;
(2)∵AM∥BN,
∴∠ACB=∠MAC,
又∵∠ACB=∠BAD,
∴∠MAC=∠BAD,
∴∠MAC﹣∠DAC=∠BAD﹣∠DAC,
∴∠MAD=∠BAC
又∵AC,AD分别平分∠BAP和∠PAM,
∴∠BAC=∠CAP,∠MAD=∠PAD
∴∠BAC=∠CAP=∠MAD=∠PAD
又∵∠BAM=140°
∴∠BAC=∠BAM=×140°=35°.
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子里装有4个小球,分别标有数字1,2,3,4;这些小球除所标数字不同外,其余完全相同,甲乙两人每次同时从袋中各随机摸出一个小球,记下球上的数字,并计算它们的积.
请用画树状图或列表的方法,求两数积是8的概率;
甲乙两人想用这种方式做游戏,他们规定,当两数之积是偶数时,甲得1分,当两数之积是奇数时,乙得3分,你认为这个游戏公平吗?请说明理由,若你认为不公平,请修改得分规则,使游戏公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=9,BC=12,∠B=∠C,点D从B出发以每秒2厘米的速度在线段BC上从B向C方向运动,点E同时从C出发以每秒2厘米的速度在线段AC上从C向A运动,连接AD、DE.
(1)运动 秒时,AE=DC(不必说明理由)
(2)运动多少秒时,∠ADE=90°-∠BAC,并请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,OA=36cm,OB=12cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课外研究小组为了解学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名同学的兴趣爱好每人只能选其中一项,并将调查结果绘制成统计图,请根据图中提供的信息解答下列问题:
在这次考察中一共调查了______名学生,请补全条形统计图;
被调查同学中恰好有4名学来自初一2班,其中有2名同学选择了篮球,有2名同学选择了乒乓球,曹老师打算从这4名同学中选择两同学了解他们对体育社团的看法,请用列表法或画树状图法,求选出的两人恰好都选择同一种球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市欲购进一种今年新上市的产品,购进价为20元件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量件与每件的销售价元件之间有如下关系:
请写出该超市销售这种产品每天的销售利润元与x之间的函数关系式,并求出超市能获取的最大利润是多少元.
若超市想获取1500元的利润求每件的销售价.
若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿带城中挂,人在画中游”,张平和王亮同学周末相约骑行于“步移景异,心旷神怡”的温江田园绿道,他们从同一地方同时骑自行车出发(骑行过程中速度保持不变),最后同时到达了同一个地方. 如图刻画了他们离出发点的路程(单位:米)与出发后的时间(单位:分钟)之间的关系. 已知张平中途两次休息时间相同,三段骑行时间也分别相同;王亮中途休息一次,两段骑行时间相同. 张平总的休息时间比王亮的休息时间多分钟. 请结合图中信息解答下列问题:
(1)在这次骑行活动中,他们的骑行路程都是多少米?
(2)求出张平和王亮的骑行速度分别是多少米/分钟?
(3)求出王亮出发后第一次追上张平的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.
(1)直线AB与直线CD是否平行,说明你的理由;
(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.
①当点G在点F的右侧时,若β=60°,求α的度数;
②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是该型号电风扇近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
求A、B两种型号的电风扇的销售单价;
若该商场准备用不多于5400元的金额再采购这两种型号的电风扇共30台,假设售价不变,那么商场应采用哪种采购方案,才能使得当销售完这些风扇后,商场获利最多?最多可获利多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com