精英家教网 > 初中数学 > 题目详情
(2006•太原)某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3米,最高3.5米的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5米.为设计这条能使上述厢式货车恰好安全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式、隧道的跨度AB和拱高OC.

【答案】分析:根据建立的坐标系可设表达式为y=ax2+h,因为图象过(1.5,4)和(2,3.5),所以可求解析式,再根据解析式求解.
解答:解:设抛物线的表达式为y=ax2+h,
∵图象经过点(1.5,4)和(2,3.5),

解之得
故抛物线的表达式为y=-x2+
拱高OC即是当x=0时y的值为米.
当y=0时有-x2+=0
解之得x1=,x2=-
即是A、B两点的横坐标,
故可得跨度AB=米.
点评:通过建模把实际问题转化为数学问题是运用数学知识解决实际问题的常用手段,重在根据题意建立适当的数学模型.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:填空题

(2006•太原)某企业2005年的年利润为50万元,如果以后每年的年利润比上一年的年利润都增长p%,那么2007年的年利润将达到    万元.

查看答案和解析>>

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:解答题

(2006•太原)在学习扇形的面积公式时,同学们推得S扇形=,并通过比较扇形面积公式与弧长公式l=,得出扇形面积的另一种计算方法S扇形=lR.接着老师让同学们解决两个问题:
问题Ⅰ:求弧长为4π,圆心角为120°的扇形面积.
问题Ⅱ:某小区设计的花坛形状如图中的阴影部分,已知AB和CD所在圆心都是点O,弧AB的长为l1,弧CD的长为l2,AC=BD=d,求花坛的面积.
(1)请你解答问题Ⅰ;
(2)在解完问题Ⅱ后的全班交流中,有位同学发现扇形面积公式S扇形=lR类似于三角形面积公式;类比梯形面积公式,他猜想花坛的面积S=(l1+l2)d.他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:解答题

(2006•太原)某地某时刻太阳光线与水平线的夹角为31°,此时在该地测得一幢楼房在水平地面上的影长为30米,求这幢楼房的高AB.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)

查看答案和解析>>

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:填空题

(2006•太原)某企业2005年的年利润为50万元,如果以后每年的年利润比上一年的年利润都增长p%,那么2007年的年利润将达到    万元.

查看答案和解析>>

同步练习册答案