精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,已知直线y=-
1
2
x
与抛物线y=-
1
4
x2+6
交于A、B两点,点C是抛物线的顶点.
(1)求出点A、B的坐标;  
(2)求出△ABC的面积;
(3)在AB段的抛物线上是否存在一点P,使得△ABP的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.
分析:(1)由直线y=-
1
2
x与抛物线y=-
1
4
x2+6交于A、B两点,可得方程-
1
2
x=-
1
4
x2+6,解方程即可求得点A、B的坐标;
(2)首先由点C是抛物线的顶点,即可求得点C的坐标,又由S△ABC=S△OBC+S△OAC即可求得答案;
(3)首先过点P作PD∥OC,交AB于D,然后设P(a,-
1
4
a2+6),即可求得点D的坐标,可得PD的长,又由S△ABP=S△BDP+S△ADP,根据二次函数求最值的方法,即可求得答案.
解答:精英家教网解:(1)∵直线y=-
1
2
x与抛物线y=-
1
4
x2+6交于A、B两点,
∴-
1
2
x=-
1
4
x2+6,
解得:x=6或x=-4,
当x=6时,y=-3,
当x=-4时,y=2,
∴点A、B的坐标分别为:(6,-3),(-4,2);

(2)∵点C是抛物线的顶点.
∴点C的坐标为(0,6),
∴S△ABC=S△OBC+S△OAC=
1
2
×6×4+
1
2
×6×6=30;

(3)存在.精英家教网
过点P作PD∥OC,交AB于D,
设P(a,-
1
4
a2+6),
则D(a,-
1
2
a),
∴PD=-
1
4
a2+6+
1
2
a,
∴S△ABP=S△BDP+S△ADP=
1
2
×(-
1
4
a2+6+
1
2
a)×(a+4)+
1
2
×(-
1
4
a2+6+
1
2
a)×(6-a)=-
5
4
(a-1)2+
125
4
(-4<a<6),
∴当a=1时,△ABP的面积最大,
此时点P的坐标为(1,
23
4
).
点评:此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角精英家教网三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图所示,已知直线a∥b,被直线L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知直线AB过点C(1,2),且与x轴、y轴分别交于点A、B,CD⊥x轴于D,CE⊥y轴于E,CF交y轴于G,交x轴于F.(F在原点O的左侧)
(1)当直线AB的位置正好使得△ACD≌△CBE时,求A点的坐标及直线AB的解析式.
(2)若S四边形ODCE=S△CDF,当直线AB的位置正好使得FC⊥AB时,求A点的坐标及BC的长.
(3)在(2)成立的前提下,将△FOG延y轴对折得△F′O′G′(对折后F、O、G的对应点分别为F′、O′、G′),将△F′O′G′沿x轴正方向精英家教网平移,设平移过程中△F′O′G′与四边形ODCE重叠部分面积为y,OO′的长为x(0≤x≤1),求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知直线y=kx-2经过M点,求此直线与x轴交点坐标和直线与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:已知直线y=
1
2
x
与双曲线y=
k
x
(k>0)
交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)过A点作AC⊥x轴于C点,求△AOC的面积.

查看答案和解析>>

同步练习册答案