精英家教网 > 初中数学 > 题目详情

【题目】如图,RtABC中,∠BAC90°,将ABC沿斜边BC向右平移,得到DEFBE<BC),ACDE相交于点O,连接ADAEDC,得到四边形AECD

1)当点EBC中点时,求证:四边形AECD是菱形;

2)在ABC平移过程中,判断四边形AECD的面积是否发生变化,请说明理由.

【答案】1)见解析;(2)四边形AECD的面积不变,见解析

【解析】

1)先根据平移的性质得到AD=BEADBE,再根据直角三角形斜边上的中线等于中线的一边得到AE=BE=CE,进一步证得四边形AECD是平行四边形;再结合AE=CE即可证明;

(2)根据进行推导即可得到结论.

1)证明:由平移的性质可知AD=BEADBE

∵∠BAC=90°,点EBC中点

AE=BE=CE

AD=CE, ADBE

∴四边形AECD是平行四边形

∵AE=CE,

∴四边形AECD是菱形.

2)四边形AECD的面积不变

∵在平移过程中DEABDE=AB

ABAC

DEAC

∴四边形AECD的面积不变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.

1)求yx之间的函数关系式;

2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?

3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB12BC10MAD边的中点,NAB边上的动点,将△AMN沿MN所在直线折叠,得到△,连接,则的最小值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,

(1)求证:的切线;

(2)若点的中点,连接于点,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象与正比例函数图象交于点,且点的横坐标为2.

1)求反比例函数的表达式;

2)若射线上有一点,且,过点轴垂直,垂足为,交反比例函数图象于点,连接,请求出的面积.

3)定义:横纵坐标均为整数的点称为“整点”.在(2)的条件下,请探究边与反比例函数图象围成的区域内(不包括边界)“整点”的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象如图,下列正确的个数为  

有两个解,当时,时,增大而减小.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】农经公司以30/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:

销售价格x(元/千克)

30

35

40

45

50

日销售量p(千克)

600

450

300

150

0

(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定px之间的函数表达式;

(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?

(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O过ABCD的三顶点A、D、C,边AB与O相切于点A,边BC与O相交于点H,射线AD交边CD于点E,交O于点F,点P在射线AO上,且PCD=2DAF.

(1)求证:ABH是等腰三角形;

(2)求证:直线PC是O的切线;

(3)若AB=2,AD=,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国魏晋时期的数学家刘徽(263年左右)首创割圆术,所谓割圆术就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率.刘微从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,,割得越细,正多边形就越接近圆.设圆的半径为,圆内接正六边形的周长,计算;圆内接正十二边形的周长,计算;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率__________.(参考数据:

查看答案和解析>>

同步练习册答案