【题目】“双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现:销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天的销售利润为y元.
(1)求出y与x之间的函数表达式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要 元.
(每天的总成本=每件的成本×每天的销售量)
【答案】(1)y=-5x2+800x-27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)5000.
【解析】
试题分析:(1)根据“利润=(售价-成本)×销售量”即可列出函数关系;
(2)把(1)中的二次函数解析式转化为顶点式,利用二次函数图象的性质求出顶点坐标即可;
(3)把y=4000代入函数解析式,求得相应的x值,求出此时的成本即可确定每天的总成本至少需要多少元.
试题解析:(1)y=(x-50)[50+5(100-x)] =(x-50)(-5x+550)=-5x2+800x-27500,
∴y=-5x2+800x-27500(50≤x≤100);
(2)y=-5x2+800x-27500=-5(x-80)2+4500,
∵a=-5<0,
∴抛物线开口向下.
∵50≤x≤100,对称轴是直线x=80,
∴当x=80时,y最大值=4500;
(3)当y=4000时,-5(x-80)2+4500=4000,
解得x1=70,x2=90.
∴当70≤x≤90时,每天的销售利润不低于4000元,
当x=70时,总成本为:50×(-5×70+550)=10000,
当x=90时,总成本为:50×(-5×90+550)=5000,
所以如果每天的销售利润不低于4000元,那么每天的总成本至少需要5000元.
科目:初中数学 来源: 题型:
【题目】小虫从某点0出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,求:
(1)小虫最后是否回到出发点“0”?为什么?
(2)小虫离开出发点“0”最远时是多少厘米?
(3)在爬行过程中,如果爬1厘米奖励两粒芝麻,那么小虫一共能得到多少粒芝麻?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要到该服装厂购买x套西装(x≥1),领带条数是西装套数的4倍多5.
(1)若该客户按方案①购买,需付款 元:(用含x的代数式表示)
若该客户按方案②购买,需付款 元;(用含x的代数式表示)
(2)若x=10,通过计算说明此时按哪种方案购买较为合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场( )
A. 不赚不赔 B. 赚160元 C. 赚80元 D. 赔80元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com