精英家教网 > 初中数学 > 题目详情
11.如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.
(1)求证:四边形DBEC是平行四边形;
(2)若AC=6,求CE的长.

分析 (1)利用已知条件和矩形的性质即可证明四边形DBEC是平行四边形;
(2)根据矩形的对应边相等及对角线相等,找出等量关系求解即可.

解答 (1)证明:∵四边形ABCD是矩形,
∴DC∥BE,
又∵CE∥BD,
∴四边形DBEC是平行四边形;
(2)解:
∵四边形DBEC是平行四边形,
∴DB=CE,
∵四边形ABCD是矩形,
∴AC=DB
∴BD=EC,
∴CE=AC=6.

点评 本题考查了矩形的性质以及平行四边形的判定与性质;熟练掌握矩形的性质和证明平行四边形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,矩形ABCD中,AB=6,AD=8.动点E,F同时分别从点A,B出发,分别沿着射线AD和射线BD的方向均以每秒1个单位的速度运动,连接EF,以EF为直径作⊙O交射线BD于点M,设运动的时间为t.
(1)BD=10,cos∠ADB=$\frac{4}{5}$(直接写出答案)
(2)当点E在线段AD上时,用关于t的代数式表示DE,DM.
(3)在整个运动过程中,
①连结CM,当t为何值时,△CDM为等腰三角形.
②圆心O处在矩形ABCD内(包括边界)时,求t的取值范围(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知关于x的一元二次方程x2+(m-2)x+$\frac{1}{2}$m-2=0.
(1)求根的判别式△的值(用含m的代数式表示).
(2)当m=4时,求此一元二次方程根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知关于x的方程(k+1)x2+(3k-1)x+2k-2=0
(1)求证:无论k取何值,此方程总有实数根;
(2)若此方程有两个整数根,求正整数k的值;
(3)若一元二次方程(k+1)x2+(3k-1)x+2k-2=0满足|x1-x2|=3,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE∥AC,DF∥AB,求证:BE=DF,DE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,?ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.把一元二次方程(x+2)(x-2)=5x化成一般形式,正确的是(  )
A.x2-5x-4=0B.x2-5x+4=0C.x2+5x-4=0D.x2+5x+4=0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,已知?ABCD的周长为36,BD=12,O是对角线的交点,E是CD的中点,则△DOE的周长为15.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=-m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.
(1)探究:当x≠0时,a与m有何数量关系?
(2)应用:已知动点M(x,y)到定点A(0,4)的距离与到定直线y=-4的距离相等,请写出动点M形成的抛物线的解析式.
(3)拓展:根据抛物线的平移变换,抛物线y=$\frac{1}{4}$(x-1)2+2的图象可以看作到定点A(1,3)的距离与它到定直线y=1的距离相等的动点M(x,y)所形成的图形.
(4)若点D的坐标是(1,8),在(2)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案