精英家教网 > 初中数学 > 题目详情
如图,OA是⊙O的半径,OA=24cm.动点P从A点出发,以2πcm/s的速度沿圆周顺时针运动.
(1)当路程AP=5π时,求点P运动了多少秒?
(2)在OA的延长线上取一点B,使得AB=OA,当P运动时间为4s时,请判断BP与⊙O的位置关系,并说明理由.精英家教网
分析:(1)已知运动速度和运动路程求运动时间,用5π÷2π即可;
(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.
解答:解:(1)5π÷2π=2.5秒,
∴点P运动了2.5秒;

(2)如图,当点P运动的时间为4s时,直线BP与⊙O相切
理由如下:
当点P运动的时间为4s时,点P运动的路程为8πcm,
连接OP,PA;
∵⊙O的周长为48πcm,
AP
的长为⊙O周长的
1
6

∴∠POA=60°;
∵OP=OA,
∴△OAP是等边三角形,
∴OP=OA=AP,∠OAP=60°;
∵AB=OA,
∴AP=AB,
∵∠OAP=∠APB+∠B,
∴∠APB=∠B=30°,
∴∠OPB=∠OPA+∠APB=90°,
∴OP⊥BP,
∴直线BP与⊙O相切.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•汕头模拟)如图,直角梯形OABC的一顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.

(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA、OC是方程
2
x
=
9-x
10
的两个根(OA>OC),在AB边上取一点D,将纸片沿CD翻折,使点B恰好落在OA边上的点E处.
(1)求OA、OC的长;
(2)求D、E两点的坐标;
(3)若线段CE上有一动点P自C点沿CE方向向E点匀速运动(点P运动到点E后停止运动),运动的速度为每秒1个单位长度,设运动的时间为t秒,过P点作ED的平行线交CD于点M.是否存在这样的t 值,使以C、E、M为顶点的三角形为等腰三角形?若存在,请直接写出t值及相应的时刻点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在X轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°,如果△AEF是等腰三角形时.将△AEF沿EF对折得△A′EF与五边形OEFBC重叠部分的面积为
17
8
或1或
41
2
-48
4
17
8
或1或
41
2
-48
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.
(1)求过E点的反比例函数解析式.
(2)求出D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上.OA∥BC,OA=4
2
,OC=
3
2
2

∠OAB=45°,D是BC上一点,CD=
3
2
2
.E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,设OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 

(2)证明△ODE∽△AEF,并确定y与x之间的函数关系;
(3)当AF=EF时,将△AEF沿EF折叠,得到△A′EF,求△A′EF与五边形OEFBC重叠部分的面积.
精英家教网

查看答案和解析>>

同步练习册答案