精英家教网 > 初中数学 > 题目详情
(2013•东营)如图,AB为⊙O的直径,点C为⊙O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°,求CE的长.
分析:(1)连接OC,根据OA=OC,推出∠BAC=∠OCA,求出∠OCA=∠CAM,推出OC∥AM,求出OC⊥CD,根据切线的判定推出即可;
(2)根据OC=OA推出∠BAC=∠ACO,求出∠COE=2∠CAB=60°,在Rt△COE中,根据CE=OC•tan60°求出即可.
解答:解:(1)直线CD与⊙O相切.
理由如下:连接OC.
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BAC=∠CAM,
∴∠OCA=∠CAM,
∴OC∥AM,
∵CD⊥AM,
∴OC⊥CD,
∵OC为半径,
∴直线CD与⊙O相切.

(2)∵OC=OA,
∴∠BAC=∠ACO,
∵∠CAB=30°,
∴∠COE=2∠CAB=60°,
∴在Rt△COE中,OC=3,CE=OC•tan60°=3
3
点评:本题考查了切线的判定,等腰三角形的性质和判定,平行线性质,锐角三角函数的定义,三角形外角性质的应用,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东营)如图,已知AB∥CD,AD和BC相交于点O,∠A=50°,∠AOB=105°,则∠C等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东营)如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为
1.3
1.3
m(容器厚度忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东营)如图,在平面直角坐标系中,一次函数y=nx+2(n≠0)的图象与反比例函数y=
m
x
(m≠0)
在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=
4
5

(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.

查看答案和解析>>

同步练习册答案