精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.

【答案】
(1)解:(1)BF∥DE,理由如下:

∵∠AGF=∠ABC,

∴GF∥BC,

∴∠1=∠3,

∵∠1+∠2=180°,

∴∠3+∠2=180°,

∴BF∥DE;


(2)解:∵BF∥DE,BF⊥AC,

∴DE⊥AC,

∵∠1+∠2=180°,∠2=150°,

∴∠1=30°,

∴∠AFG=90°﹣30°=60°.


【解析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数
【考点精析】利用余角和补角的特征和垂线的性质对题目进行判断即可得到答案,需要熟知互余、互补是指两个角的数量关系,与两个角的位置无关;垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月平均增长率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①35=3×3×3×3×3;②﹣1是单项式,且它的次数为1;③若∠1=90°﹣∠2,则∠1与∠2互为余角;④对于有理数n、x、y(其中xy≠0),若 = ,则x=y.其中不正确的有(
A.3个
B.2个
C.1个
D.0个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D是弧AE上一点,且∠BDE=CBEBDAE交于点F.

(1)求证:BC是⊙O的切线;

(2)若BD平分∠ABE,求证:DE2=DF·DB;

(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请写出一个图象经过点(1,1),且函数值随着自变量的增大而减小的一次函数解析式:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知l1∥l2 , AC、BC、AD为三条角平分线,则图中与∠1互为余角的角有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC=10,D是边BC上一动点(不与B,C重合),∠ADE=B=α,DEAC于点E,cosα= .下列结论:

①△ADE∽△ACD; ②当BD=6时,△ABD与△DCE全等;

③△DCE为直角三角形时,BD为8; ④0<CE≤6.4.

其中正确的结论是____________.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E、F分别是BC,AD上的点,且BE=DF,对角线AC⊥AB.
(1)求证:四边形AECF是平行四边形;
(2)①当E为BC的中点时,求证:四边形AECF是菱形;
(3)②若AB=6,BC=10,当BE长为时,四边形AECF是矩形. ③四边形AECF有可能成为正方形吗?答: . (填“有”或“没有”)

查看答案和解析>>

同步练习册答案