5£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=-x2-2x+3ÓëÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬µãDΪÅ×ÎïÏߵĶ¥µã£®
£¨1£©ÇóÖ±ÏßACµÄ½âÎöʽ£¬²¢Ö±½Óд³öDµãµÄ×ø±ê£®
£¨2£©Èçͼ1£¬ÔÚÖ±ÏßACµÄÉÏ·½Å×ÎïÏßÉÏÓÐÒ»¶¯µãP£¬¹ýPµã×÷PQ´¹Ö±ÓÚxÖá½»ACÓÚµãQ£¬PM¡ÎBD½»ACÓÚµãM£®
¢ÙÇó¡÷PQMÖܳ¤×î´óÖµ£»
¢Úµ±¡÷PQMÖܳ¤È¡µÃ×î´óֵʱ£¬PQÓëxÖá½»µãΪH£¬Ê×λ˳´ÎÁ¬½ÓP¡¢H¡¢O¡¢D¹¹³ÉËıßÐΣ¬ËüµÄÖܳ¤ÎªL£¬ÈôÏ߶ÎOHÔÚxÖáÉÏÒƶ¯£¬ÇóL×îСֵʱOHÒƶ¯µÄ¾àÀë¼°LµÄ×îСֵ£®
£¨3£©Èçͼ2£¬Á¬½ÓBDÓëyÖáÓÚµãF£¬½«¡÷BOFÈƵãOÄæʱÕëÐýת£¬¼ÇÐýתºóµÄÈý½ÇÐÎΪ¡÷BOF¡ä£¬B¡äF¡äËùÔÚÖ±ÏßÓëÖ±ÏßAC¡¢Ö±ÏßOC·Ö±ð½»ÓÚµãG¡¢K£¬µ±¡÷CGKΪֱ½ÇÈý½ÇÐÎʱ£¬Ö±½Óд³öÏ߶ÎBGµÄ³¤£®

·ÖÎö £¨1£©Ê×ÏÈÇó³öÅ×ÎïÏßÓë×ø±êÖáµÄ½»µã£¬ÀûÓôý¶¨ÏµÊý·¨ÒÔ¼°Åä·½·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©£©¢ÙÈçͼ1ÖУ¬×÷DN¡ÎyÖáJ½»ACÓÚN£¬Ö±ÏßBD½»ACÓÚK£®ÏÈÇó³ö¡÷DKNµÄÈý±ß£¬ÔÙÇó³öPQµÄ×î´óÖµ£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÇó³öPM¡¢MQ¼´¿É½â¾öÎÊÌ⣮
¢ÚÈçͼ2ÖУ¬×÷PE¡ÎxÖá½»yÖáÓëE£¬×÷E¹ØÓÚxÖáµÄ¶Ô³ÆµãK£¬Á¬½ÓDKÓëxÖá½»ÓÚµãO¡ä£¬½«OHƽÒƵ½O¡äH´¦£¬´ËʱËıßÐÎPHO¡äDµÄÖܳ¤×îС£®·Ö±ðÇó³öPD£¬DK£¬OO¡ä¼´¿É½â¾öÎÊÌ⣮
£¨3£©·ÖÁ½ÖÖÇéÐ΢ÙÈçͼ3ÖУ¬µ±¡ÏCGK=90¡ãʱ£¬×÷OE¡ÍGKÓÚE£¬Ïë°ì·¨Çó³öµãG×ø±ê¼´¿É£®¢ÚÈçͼ4ÖУ¬µ±¡ÏCKG=90¡ãʱ£¬Çó³öµãG×ø±ê¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¶ÔÓÚÅ×ÎïÏßy=-x2-2x+3£¬Áîx=0µÃy=3£¬¡àµãC£¨0£¬3£©£¬
Áîy=0µÃ-x2-2x+3=0£¬½âµÃx=-3»ò1£¬
¡àA£¨-3£¬0£©£¬B£¨1£¬0£©£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬°ÑA¡¢CÁ½µã×ø±ê´úÈëµÃµ½$\left\{\begin{array}{l}{b=3}\\{-3k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=x+3£®
¡ßy=-x2-2x+3=-£¨x+1£©2+4£¬
¡à¶¥µãD×ø±êΪ£¨-1£¬4£©£®

£¨2£©¢ÙÈçͼ1ÖУ¬×÷DN¡ÎyÖáJ½»ACÓÚN£¬Ö±ÏßBD½»ACÓÚK£®

¡ßÖ±ÏßACµÄ½âÎöʽΪy=x+3£¬Ö±ÏßBDµÄ½âÎöʽΪy=y=-2x+2£¬
ÓÉ$\left\{\begin{array}{l}{y=-2x+2}\\{y=x+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-\frac{1}{3}}\\{y=\frac{8}{3}}\end{array}\right.$£¬
¡àµãK×ø±ê£¨-$\frac{1}{3}$£¬$\frac{8}{3}$£©£¬N£¨-1£¬2£©£¬
¡àDN=2£¬DK=$\sqrt{£¨-\frac{1}{3}+1£©^{2}+£¨\frac{8}{3}-4£©^{2}}$=$\frac{2\sqrt{5}}{3}$£¬KN=$\sqrt{£¨-\frac{1}{3}+1£©^{2}+£¨\frac{8}{3}-2£©^{2}}$=$\frac{2\sqrt{2}}{3}$£¬
ÔÚ¡÷PMQÖУ¬¡ß¡ÏPMQ=¡ÏDKN=¶¨Öµ£¬
¡àµ±¡÷PMQÖܳ¤µÄ×î´óֵʱ£¬PQ¶¨Öµ×î´ó£¬ÉèP£¨m£¬-m2-2m+3£©ÔòQ£¨m£¬m+3£©£¬
¡àPQ=-m2-2m+3-m-3=-m2-3m=-£¨m+$\frac{3}{2}$£©2+$\frac{9}{4}$£®
¡ßa=-1£¼0£¬
¡àm=-$\frac{3}{2}$ʱ£¬PQµÄ×î´óֵΪ$\frac{9}{4}$£¬
ÓÉ¡÷PMQ¡×¡÷DKN£¬µÃ$\frac{PM}{DK}$=$\frac{MQ}{KN}$=$\frac{PQ}{DN}$£¬
¡à$\frac{PM}{\frac{2\sqrt{5}}{3}}$=$\frac{MQ}{\frac{2\sqrt{2}}{3}}$=$\frac{\frac{9}{4}}{2}$£¬
¡àPM=$\frac{3\sqrt{5}}{4}$£¬MQ=$\frac{3\sqrt{2}}{4}$£¬
¡à¡÷PMQµÄÖܳ¤×î´óֵΪ$\frac{9}{4}$+$\frac{3\sqrt{5}}{4}$+$\frac{3\sqrt{2}}{4}$£®

¢ÚÈçͼ2ÖУ¬×÷PE¡ÎxÖá½»yÖáÓëE£¬×÷E¹ØÓÚxÖáµÄ¶Ô³ÆµãK£¬Á¬½ÓDKÓëxÖá½»ÓÚµãO¡ä£¬½«OHƽÒƵ½O¡äH´¦£¬´ËʱËıßÐÎPHO¡äDµÄÖܳ¤×îС£®

¡ßP£¨-$\frac{3}{2}$£¬$\frac{15}{4}$£©£¬D£¨-1£¬4£©£¬K£¨0£¬-$\frac{15}{4}$£©£¬
¡àO¡ä×ø±êΪ£¨-$\frac{15}{31}$£¬0£©£¬PD=$\sqrt{£¨-\frac{3}{2}+1£©^{2}+£¨\frac{15}{4}-4£©^{2}}$=$\frac{\sqrt{5}}{4}$£¬DK=$\sqrt{£¨-1£©^{2}+£¨4+\frac{15}{4}£©^{2}}$=$\frac{\sqrt{977}}{4}$£¬O¡äH=$\frac{3}{2}$£¬
¡àOHÏò×óƽÒÆ$\frac{15}{31}$¸öµ¥Î»£¬LµÄ×îСֵ=PD+DK+O¡äH=$\frac{\sqrt{5}}{4}$+$\frac{\sqrt{977}}{4}$+$\frac{3}{2}$£®

£¨3£©¢ÙÈçͼ3ÖУ¬µ±¡ÏCGK=90¡ãʱ£¬×÷OE¡ÍGKÓÚE£¬

¡ßOA=OC£¬¡ÏAOC=90¡ã£¬
¡à¡ÏGCK=¡ÏGKC=¡ÏOKE=¡ÏKOE=45¡ã£¬
¡ßOE=$\frac{OB¡ä¡ÁOF¡ä}{B¡äF¡ä}$=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$£¬
¡àOK=$\frac{2\sqrt{10}}{5}$£¬KC=3-$\frac{2\sqrt{10}}{5}$£¬
¡àG£¨$\frac{\sqrt{10}}{5}$-$\frac{3}{2}$£¬$\frac{3}{2}$+$\frac{\sqrt{10}}{5}$£©£¬
¡àGB=$\sqrt{£¨\frac{\sqrt{10}}{5}-\frac{5}{2}£©^{2}+£¨\frac{3}{2}+\frac{\sqrt{10}}{5}£©^{2}}$=$\sqrt{\frac{93}{10}-\frac{2}{5}\sqrt{10}}$£®

¢ÚÈçͼ4ÖУ¬µ±¡ÏCKG=90¡ãʱ£¬µãG£¨$\frac{2\sqrt{10}}{5}$-3£¬$\frac{2\sqrt{10}}{5}$£©£¬
¡àBG=$\sqrt{£¨\frac{2\sqrt{10}}{5}-4£©^{2}+£¨\frac{2\sqrt{10}}{5}£©^{2}}$=4$\sqrt{\frac{6-\sqrt{10}}{5}}$£®

¢ÛÈçͼ5ÖУ¬µ±¡ÏCGF¡ä=90¡ã£¬Í¬·¨¿ÉµÃG£¨-$\frac{\sqrt{10}}{5}$-$\frac{3}{2}$£¬$\frac{3}{2}$-$\frac{\sqrt{10}}{5}$£©£¬
GB=$\sqrt{£¨\frac{\sqrt{10}}{5}+\frac{5}{2}£©^{2}+£¨\frac{3}{2}-\frac{\sqrt{10}}{5}£©^{2}}$=$\sqrt{\frac{93}{10}+\frac{2}{5}\sqrt{10}}$£®
¡Ï
¢ÜÈçͼ6ÖУ¬µ±¡ÏGKC=90¡ã£¬Í¬·¨¿ÉµÃG£¨-$\frac{2\sqrt{5}}{5}$-3£¬-$\frac{2\sqrt{5}}{5}$£©£¬
¡àGB=$\sqrt{£¨4+\frac{2\sqrt{5}}{5}£©^{2}+£¨\frac{2\sqrt{5}}{5}£©^{2}}$=$\sqrt{\frac{88}{5}+\frac{16}{5}\sqrt{5}}$=2$\sqrt{\frac{22}{5}+\frac{4}{5}\sqrt{5}}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢Ò»´Îº¯Êý¡¢×îСֵÎÊÌâ¡¢Ðýת±ä»»¡¢Á½µã¼ä¾àÀ빫ʽµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÀûÓöԳƽâ¾ö×îÖµÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯ÊýÈ·¶¨×îÖµÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬µãMΪÕýÎå±ßÐÎABCDEµÄ±ßBCÉÏÒ»µã£¬$\frac{BM}{CM}$=2£¬Á¬½áAM£¬×÷¡ÏAMN=108¡ã£¬MN½»CDÓÚµãN£¬Ôò$\frac{CN}{ND}$µÄֵΪ$\frac{2}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èç¹û$\sqrt{4xy}$=2$\sqrt{x}$•$\sqrt{y}$³ÉÁ¢£¬ÄÇôx£¬y±ØÐëÂú×ãÌõ¼þx¡Ý0£¬y¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÓÃ5.2Ã׳¤µÄÌú˿Χ³ÉÒ»¸ö³¤·½ÐΣ¬Ê¹µÃ³¤±È¿í¶à0.6Ã×£¬ÇóΧ³ÉµÄ³¤·½Ðεij¤Óë¿í¸÷¶àÉÙÃ×£®Èç¹ûÉ賤·½ÐεĿíΪxÃ×£¬ÄÇô¿ÉµÃ·½³ÌΪ2£¨x+x+0.6£©=5.2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬BDÊÇ¡ÑOµÄÖ±¾¶£¬ÏÒAB=AC£¬¡ÏBAC=120¡ã£¬ÒÑÖªAB=2£¬ÔòAD=2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èç¹ûµÈʽ£¨x-3£©2x-1=1£¬Ôòx=$\frac{1}{2}$»ò4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬tanA=£¨¡¡¡¡£©
A£®$\frac{BC}{AB}$B£®$\frac{AC}{AB}$C£®$\frac{BC}{AC}$D£®$\frac{AC}{BC}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=$\frac{1}{a}$£¨x-2£©£¨x+a£©£¨a£¾0£©ÓëxÖá´Ó×óÖÁÓÒ½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©ÈôÅ×ÎïÏß¹ýµãT£¨1£¬-$\frac{5}{4}$£©£¬ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚµÚ¶þÏóÏÞÄÚµÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹µÃÒÔA¡¢B¡¢DÈýµãΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£¿Èô´æÔÚ£¬ÇóaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬µãPµÄ×ø±êΪ£¨-1£¬1£©£¬µãQ£¨6£¬t£©ÊÇÅ×ÎïÏßÉϵĵ㣬ÔÚxÖáÉÏ£¬´Ó×óÖÁÓÒÓÐM¡¢NÁ½µã£¬ÇÒMN=2£¬ÎÊMNÔÚxÖáÉÏÒƶ¯µ½ºÎ´¦Ê±£¬ËıßÐÎPQNMµÄÖܳ¤×îС£¿ÇëÖ±½Óд³ö·ûºÏÌõ¼þµÄµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¶ÔÓÚʵÊýx£¬¶¨Òå[x]±íʾ²»´óÓÚxµÄ×î´óÕûÊý£¬Èç[1.5]=1£¬[5]=5£¬[-3.3]=-4£¬Èô[$\frac{x+3}{2}$]=3£¬ÔòxµÄÈ¡Öµ·¶Î§ÊÇ3¡Üx£¼5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸