精英家教网 > 初中数学 > 题目详情

【题目】某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:

商品名称

进价(/)

40

90

售价(/)

60

120

设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.

()写出y关于x的函数关系式;

()该商场计划最多投入8000元用于购买这两种商品,

①至少要购进多少件甲商品?

②若销售完这些商品,则商场可获得的最大利润是多少元?

【答案】()()①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.

【解析】

()根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;()①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.

()根据题意得:

yx的函数关系式为

(),解得

∴至少要购进20件甲商品.

y随着x的增大而减小

∴当时,有最大值,

∴若售完这些商品,则商场可获得的最大利润是2800元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设抛物线x轴交于两个不同的点A(-10)B(m0),与y轴交于点C.且∠ACB=90°

(1)m的值和抛物线的解析式;

(2)已知点D(1n )在抛物线上,过点A的直线交抛物线于另一点E.若点Px轴上,以点PBD为顶点的三角形与△AEB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店同时购进甲、乙两种款式的运动服共套,进价和售价如表中所示,设购进甲款运动服套(为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为元.

运动服款式

甲款

乙款

进价(元套)

售价(元套)

1)求的函数关系式;

2)该服装店计划投入万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?

3)在(2)的条件下,若服装店购进甲款运动服的进价降低元(其中),且最多购进套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒 肺炎的防护知识,并鼓励社区居民在线参与作答《2020 年新型冠状病毒防治全国统一考试 (全国卷)》试卷(满分 100 分),社区管理员随机从甲、乙两个小区各抽取 20 名人员的 答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:

收集数据

甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75

乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90

整理数据

60≤x≤70

70x≤80

80x≤90

90x≤100

甲小区

2

5

8

5

乙小区

3

7

5

5

分析数据

平均数

中位数

众数

甲小区

85.75

87.5

a

乙小区

83.5

b

80

应用数据

1)填空:a = ,b =___

2)若甲小区共有 800 人参与答卷,请估计甲小区成绩大于 90 分的人数为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在每个小正方形的边长为1的网格中,点AB均为格点.

()AB的长等于_____

()若点C是以AB为底边的等腰直角三角形的顶点,点D在边AC上,且满足SABD=SABC.请在如图所示的网格中,用无刻度的直尺,画出线段BD,并简要说明点D的位置是如何找到的(不要求证明)______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年南充市有县区申报了长寿之乡,并获认定.上月某中学九(1)班学生社会实践前往该区一乡镇调研进入老龄化社会的数据.按国际通行标准,当一个国家或地区6060岁以上人口达到人口总数的10%,或6565岁以上人口达到人口总数的7%,这个区域进入老龄化社会.被调查的800人年龄情况统计图如下:

1)该乡镇是否进入老龄化社会?并说明理由.

2)请你为该乡镇提一条合理化建议.

3)在该乡镇60岁及以上人群中随机抽取1人,求年龄不低于70岁的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在全国初中数学联赛中,将参赛两个班学生的成绩(得分均为整数)进行整理后分成五组,绘制出如下的频率分布直方图(如图所示),已知图中从左到右的第一、第三、第四、第五小组的频率分别是025015010010,第二组的频数是40

1)第二小组的频率是_____,并补全这个频率分布直方图;

2)这两个班参赛的学生人数是_________

3)这两个班参赛学生的成绩的中位数落在第______组内.(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,上一点,连接

1)如图1,若延长线上一点,垂直,求证:

2)过点为垂足,连接并延长交于点.

①如图2,若,求证:

②如图3,若的中点,直接写出的值(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(操作发现)如图(1),在△OAB和△OCD中,OAOBOCOD,∠AOB=∠COD45°,连接ACBD交于点M

ACBD之间的数量关系为   

AMB的度数为   

(类比探究)如图(2),在△OAB和△OCD中,∠AOB=∠COD90°,∠OAB=∠OCD30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数;

(实际应用)如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABCDCE组成的图形,其中∠ACB=∠DCE90°,∠A=∠D30°且DEB在同一直线上,CE1BC ,求点AD之间的距离.

查看答案和解析>>

同步练习册答案