【题目】如图,在矩形纸片ABCD中,已知AB=6,BC=8,E是边AD上的点,以CE为折痕折叠纸片,使点D落在点F处,连接FC,当△AEF为直角三角形时,DE的长为_________.
【答案】3或6.
【解析】
如图1,所示,由∠CFE+∠AFE=180°,可知点A、F、C在一条直线上,先求得AC的长,然后由△AEF∽△ACD可求得ED的长;如图2所示,可证明四边形CDEF为正方形从而可求得ED的长.
如图1所示:
由翻折的性质可知:EF=ED,∠EFC=∠EDC=90°,
∵△AEF为直角△,
∴∠AFE=90°.
∴∠CFE+∠AFE=180°.
∴点A、F、C在一条直线上.
在Rt△ABC中,AC==10.
设DE=x,则EF=x.
∵∠EAF=∠DAC,∠EFA=∠CDA,
∴△AEF∽△ACD.
∴,即
.
解得:x=3.
∴ED=3.
如图2所示:
∵∠AEF=90°,
∴∠FED=90°.
∴∠FED=∠D=∠DCF=90°.
∴四边形CDEF为矩形.
由翻折的性质可知:DE=EF.
∴四边形CDEF为正方形.
∴DE=DC=6.
综上所述,ED的长为3或6.
故答案为:3或6.
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上依次有三点 A、B、C,点 B 对应的数是,且点 B 到点A、C的距离均为600.
(1)写出点A所对应的数;
(2)若动点P、Q分别从B、C两点同时向右运动,点 P、Q 的速度分别为 10 单位长度每秒、5单位长度每秒,问多少秒时点P与点Q重合;
(3)若动点P、Q分别从A、C两点相向而行,点P运动20秒后,点Q开始运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,问点 P 运动多少秒时P,Q两点的距离为200.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,BD=DC,DE⊥BC,交∠BAC的平分线于E,EM⊥AB,EN⊥AC,
(1)求证:BM=CN
(2)若AB=9,AC=5.求AM长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
C. “明天降雨的概率为”,表示明天有半天都在降雨
D. 了解一批电视机的使用寿命,适合用普查的方式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2﹣
x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市购买大件物品都有送货上门服务,那么罗平沃尔玛超市一辆货车从超市出发,向东走了,到达小明家,继续向东走了
到达小红家,又向西走了
到达小英家,最后回到超市.
(1)请以超市为原点,以向东为正方向,用1个单位长度表示,画出数轴.并在数轴上表示出小明家、小红家、小英家的位置;
(2)小英家距小明家有多远?
(3)货车一共行驶了多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC﹣∠CEF=90°,连接AF,M是AF的中点
(1)如图1,当CB与CE在同一直线上时,连接CM,若CB=1,CE=2,求CM的长.
(2)如图2,连接MB,ME,当∠BCE=45°时,求证:BM=ME.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角形ABC的三边长分别为6 cm、7.5 cm、9 cm,三角形DEF的一边长为4 cm.当三角形DEF的另两边长是下列哪一组时,这两个三角形相似( )
A. 2 cm、3 cm B. 4 cm、5 cm C. 5 cm、6 cm D. 6 cm、7 cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com