分析 根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.
解答 解:由图可知,∠AOB=45°,
∴直线OA的解析式为y=x,
联立$\left\{\begin{array}{l}{y=x}\\{y={x}^{2}+k}\end{array}\right.$,
消掉y得:x2-x+k=0,
△=b2-4ac=(-1)2-4×1×k=0,
即k=$\frac{1}{4}$时,抛物线与OA有一个交点,
∵点B的坐标为(1,0),
∴OA=1,
∴点A的坐标为($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
∴交点在线段AO上;
当抛物线经过点B(1,0)时,1+k=0,
解得k=-1,
∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是-1<k<$\frac{1}{4}$,
故答案为:-1<k<$\frac{1}{4}$.
点评 本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1.4m | B. | 1.6m | C. | 1.8m | D. | 2m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com