精英家教网 > 初中数学 > 题目详情
5.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为4.

分析 在DC上截取DG=FD=AD-AF=4-3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.

解答 解:在DC上截取DG=FD=AD-AF=4-3=1,连接EG,则EG与BD的交点就是P.
∵AE=DG,且AE∥DG,
∴四边形ADGE是平行四边形,
∴EG=AD=4.
故答案为:4.

点评 本题考查了轴对称,理解菱形的性质,对角线所在的直线是菱形的对称轴是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.8时45分,时针与分针的夹角是7.5°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:A=($\frac{3}{a+1}$-a+1)÷$\frac{{a}^{2}-4a+4}{a+1}$
(1)化简A;
(2)若a满足方程a2-2a-3=0,求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.化简$\frac{{3{m^2}}}{9mn}$=$\frac{m}{3n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.按要求完成下列尺规作图(不写作图,保留作图痕迹).

(1)如图①,点A、B、C是平行四边形ABCD的三个顶点,求作平行四边形ABCD;
(2)如图②,点O、P、Q分别是平行四边形EFGH三边EH、EF、FG的中点,求作平行四边形EFGH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.
(1)求证:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,点E在?ABCD的对角线BD上,求作:$\overrightarrow{AD}$+$\overrightarrow{BE}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:在等腰直角△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n,画图探究以x、m、n为边长的三角形的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在等腰三角形ABC中,当顶角A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也确定了,我们把这个比值记作T(A),即T(A)=$\frac{∠A的对边(底边)}{∠A的邻边(腰)}$=$\frac{BC}{AB}$.例:T(60°)=1,那么T(120°)=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案