【题目】阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等,,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵,∴.
理解应用:
如图,甲船以每小时海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?
【答案】(1)等边三角形;(2).
【解析】
试题分析:(1)先根据路程=速度×时间求出A1A2的长,又A2B2=,∠A1A2B2=60°,根据有一个角是60°的等腰三角形是等边三角形即可得出△A1A2B2是等边三角形;
(2)先由平行线的性质及方向角的定义求出∠A1B1B2=75°﹣15°=60°,由等边三角形的性质得出∠A2A1B2=60°,A1B2=A1A2=,那么∠B1A1B2=105°﹣60°=45°.然后在△B1A1B2中,根据阅读材料可知,,求出B1B2的距离,再由时间求出乙船航行的速度.
试题解析:解:(1)△A1A2B2是等边三角形,理由如下:
连结A1B2.∵甲船以每小时海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=×=,又∵A2B2=,∠A1A2B2=60°,∴△A1A2B2是等边三角形;
(2)如图,∵B1N∥A1A2,∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,∴∠A1B1B2=75°﹣15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=,∴∠B1A1B2=105°﹣60°=45°.在△B1A1B2中,∵A1B2=,∠B1A1B2=105°﹣60°=45°,∠A2A1B2=60°,由阅读材料可知,,解得B1B2==,所以乙船每小时航行:=海里.
科目:初中数学 来源: 题型:
【题目】问题引入:
(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC= (用α表示)
拓展研究:
(2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC= (用α表示),并说明理由.
类比研究:
(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.
(1)求取出纸币的总额是30元的概率;
(2)求取出纸币的总额可购买一件51元的商品的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列真命题中,逆命题是假命题的是( )
A. 等腰三角形的两底角相等 B. 全等三角形的三组对应边分别相等
C. 若a=b,则a2=b2 D. 若a2>b2,则|a|>|b|
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.
①求证:FA=DE;
②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;
(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com