精英家教网 > 初中数学 > 题目详情
如图(a),点F、G、H、E分别从正方形ABCD的顶点B、C、D、A同时出发,以1cm/s的速度沿着正方形的边向C、D、A、B运动.若设运动时间为x(s),问:
(1)四边形EFGH是什么图形?证明你的结论;
(2)若正方形ABCD的边长为2cm,四边形EFGH的面积为y(cm2),求y关于x的函数解析式和自变量x的取值范围;
(3)若改变点的连接方式(如图(b)),其余不变.则当动点出发几秒时,图中空白部分的面积为3cm2
(1)(本小题共4分)
∵正方形ABCD中AB=BC,而∠A=∠B=90°
又∵AH=BE
∴AE=BF
∴△AEH≌△BFE
∴HE=EF,∠HEA=∠EFB
而∠HEA+∠AHE=90°
∴∠HEA+∠FEB=90°
∴∠HEF=90°
同理:HE=EF=FG=GH
∴四边形EFGH是正方形.

(2)(本小题共5分)
y=22-4×
1
2
x(2-x)
(3)(3分)
=2x2-4x+4(0<x<2)((1分),自变量取值范围(1分),共2分)

(3)(本小题共3分)空白部分的面积=4x-4+
4(x-2)2
x2+4
(2分),
方程为:4x-4+
4(x-2)2
x2+4
=3
(到此就可得1分),
化简得:4x3-3x2-12=0,
由计算器估算得x≈1.74
所以当动点出发约1.74秒时,图中空白部分的面积为3cm2.(直接给出结果给1分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+2的图象与y轴相交于点A,与反比例函数y=
2
x
在第一象限的图象相交于D、E两点,已知点D、E分别在正方形ABCO的边AB、BC上.
(1)求点A、D、E的坐标;
(2)求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A1、A2、A3是抛物线y=
1
2
x2上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C.
(1)如图,若A1、A2、A3三点的横坐标依次为1,2,3,求线段CA2的长;
(2)如图,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,A1、A2、A3三点的横坐标为连续整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c,A1、A2、A3三点的横坐标为连续整数,其他条件不变,请猜想线段CA2的长(用a、b、c表示,并直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:
x-3-2-101
y-60406
(1)求二次函数解析式,并写出顶点坐标;
(2)在直角坐标系中画出该抛物线的图象
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<-1,试比较y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2
的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2011在y轴的正半轴上,点B1,B2,B3,…,B2011在二次函数y=
2
3
x2
位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A0B1A1的边长=______,△A2010B2011A2011的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=x2+2x+c的顶点在双曲线y=
2
x
上,则y有最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案