精英家教网 > 初中数学 > 题目详情
10.计算与化简:
(1)$\sqrt{\frac{16}{25}}$;(2)$\sqrt{1\frac{1}{2}}$÷$\sqrt{\frac{1}{6}}$;(3)$\sqrt{\frac{x}{x-2}}$;(4)$\frac{1}{\sqrt{3}+\sqrt{2}}$.

分析 (1)根据二次根式的性质化简即可;
(2)根据二次根式的除法法则进行计算即可;
(3)根据二次根式的性质把根号内的分母移入根号外即可;
(4)分母有理化即可.

解答 解:(1)$\sqrt{\frac{16}{25}}$=$\frac{4}{5}$;

(2)$\sqrt{1\frac{1}{2}}$÷$\sqrt{\frac{1}{6}}$
=$\sqrt{\frac{3}{2}×\frac{6}{1}}$
=$\sqrt{9}$
=3;

(3)$\sqrt{\frac{x}{x-2}}$
=$\sqrt{\frac{x(x-2)}{(x-2)^{2}}}$
=$\left\{\begin{array}{l}{-\frac{\sqrt{x(x-2)}}{x-2}(x>2)}\\{\frac{\sqrt{x(x-2)}}{x-2}(x<2)}\end{array}\right.$;

(4)$\frac{1}{\sqrt{3}+\sqrt{2}}$
=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})×(\sqrt{3}-\sqrt{2})}$
=$\sqrt{3}$-$\sqrt{2}$.

点评 本题考查了二次根式的混合运算的应用,能熟记二次根式的运算法则是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB平行且等于EF,求证:BC=FD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.长沙市市政绿化工程中有一块面积为160m2的矩形空地,已知该矩形空地的长比宽多6m.
(1)请算出该矩形空地的长与宽;
(2)规划要求在矩形空地的中间留有两条互相垂直且宽度均为1m的人行甬道(其中两条人行甬道分别平行于矩形空地的长和宽),其余部分种上草.如果人行甬道的造价为260元/m2,种草区域的造价为220元/m2,那么这项工程的总造价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知x+y=2,2y2-y-4=0,则y-$\frac{x}{y}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.用配方法解下列方程
(1)x2-4x+1=0
(2)4x2+8x+1=0
(3)2x2-x-1=0
(4)y2+2($\sqrt{3}$+1)y+2$\sqrt{3}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.计算(-12)-(-3)+(-10)-(-9)-$\frac{1}{3}$的结果是(  )
A.$-\frac{25}{3}$B.$-\frac{43}{3}$C.$-\frac{49}{3}$D.$-\frac{31}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.腰长为10,一条高为8的等腰三角形的底边长为12或4$\sqrt{5}$或8$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知四边形ABCD是正方形,AC、BD相交于点O,过点A作∠BAC的平分线分别交BD、BC于E、F.
(1)如图1,求证:CF=2EO;
(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.发展工业是强国之梦的重要举措,如图所示零件的左视图是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案