12£®ÒÑ֪ˮÒøÌåμƵĶÁÊýy£¨¡æ£©ÓëË®ÒøÖùµÄ³¤¶Èx£¨cm£©Ö®¼äÊÇÒ»´Îº¯Êý¹Øϵ£¬ÏÖÓÐһ֧ˮÒøÌåμƣ¬Æ䲿·Ö¿Ì¶ÈÏß²»ÇåÎú£¨Èçͼ£©£¬±íÖмǼµÄÊǸÃÌåμƲ¿·ÖÇåÎú¿Ì¶ÈÏß¼°Æä¶ÔӦˮÒøÖùµÄ³¤¶È£®
Ë®ÒøÖùµÄ³¤¶Èx£¨cm£©4.0¡­8.09.6
ÌåμƵĶÈÊýy£¨¡æ£©35.0¡­40.042.0
£¨1£©Çóy¹ØÓÚxµÄº¯Êý¹Øϵʽ£¨²»ÐèҪд³öº¯Êý×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£©£»
£¨2£©ÓøÃÌåμƲâÌåÎÂʱ£¬Ë®ÒøÖùµÄ³¤¶ÈΪ6.0cm£¬Çó´ËʱÌåμƵĶÁÊý£®

·ÖÎö £¨1£©¸ù¾Ý±í¸ñÖеÄÊý¾ÝÀûÓôý¶¨ÏµÊý·¨£¬¼´¿ÉÇó³öy¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨2£©½«x=6.0´úÈ루1£©µÄ½áÂÛÖÐÇó³öyÖµ¼´¿É£®

½â´ð ½â£º£¨1£©Éèy¹ØÓÚxµÄº¯Êý¹ØϵʽΪy=kx+b£¨k¡Ù0£©£¬
½«µã£¨4£¬35£©¡¢£¨8£¬40£©´úÈëy=kx+b£¬
$\left\{\begin{array}{l}{4k+b=35}\\{8k+b=40}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=\frac{5}{4}}\\{b=30}\end{array}\right.$£¬
¡ày¹ØÓÚxµÄº¯Êý¹ØϵʽΪy=$\frac{5}{4}$x+30£®
£¨2£©µ±x=6.0ʱ£¬y=$\frac{5}{4}$x+30=$\frac{5}{4}$¡Á6+30=37.5£®
´ð£º´ËʱÌåμƵĶÁΪ37.5¡æ£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óᢴý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽÒÔ¼°Ò»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾Ý±í¸ñÖеÄÊý¾ÝÀûÓôý¶¨ÏµÊý·¨£¬Çó³öy¹ØÓÚxµÄº¯Êý¹Øϵʽ£»£¨2£©ÀûÓÃÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷Çó³öµ±x=6.0ʱyÖµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÑîÐõÏËάµÄÖ±¾¶Ô¼Îª0.000 011m£¬¸ÃÊý¾ÝÓÿÆѧ¼ÇÊý·¨±íʾÊÇ1.1¡Á10-5m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³Ñ§Ð£ÔÚУʦÉú¼°¹¤×÷ÈËÔ±¹²600ÈË£¬ÆäÖÐÒ»¸öѧÉú»¼Ò»ÖÖ´«È¾²¡£¬¾­¹ýÁ½ÂÖ´«È¾ºó¹²ÓÐ64ÈË»¼Á˸ò¡£®
£¨1£©ÇóÿÂÖ´«È¾ÖÐƽ¾ùÒ»¸öÈË´«È¾Á˼¸¸öÈË£¿
£¨2£©Èç¹û²»¼°Ê±¿ØÖÆ£¬µÚÈýÂÖ´«È¾ºóѧУ»¹ÓжàÉÙÈËδ±»´«È¾£¨µÚÈýÂÖ´«È»ºóÈÔδÓÐÖÎÓúÕߣ©£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¡÷ABCµÄλÖÃÈçͼËùʾ£¬A¡¢B¡¢CÈýµãµÄ×ø±ê·Ö±ðΪA£¨-1£¬3£©¡¢B£¨-4£¬1£©¡¢C£¨-2£¬1£©£¬°Ñ¡÷ABCÏòÓÒƽÒÆ4¸öµ¥Î»³¤¶ÈºóµÃµ½¶ÔÓ¦µÄ¡÷A1B1C1£¬ÔÙ½«¡÷A1B1C1ÏòÏÂƽÒÆ5¸öµ¥Î»³¤¶ÈºóµÃµ½¶ÔÓ¦µÄ¡÷A2B2C2£®
£¨1£©·Ö±ð×÷³ö¡÷A1B1C1ºÍ¡÷A2B2C2£»
£¨2£©Çó¡÷A2B2C2µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÌõ¼þÖв»ÄÜÈ·¶¨ÁâÐεÄÐÎ×´ºÍ´óСµÄÊÇ£¨¡¡¡¡£©
A£®ÒÑÖªÁâÐεÄÁ½Ìõ¶Ô½ÇÏßB£®ÒÑÖªÁâÐεÄÒ»±ßºÍÒ»¸öÄÚ½Ç
C£®ÒÑÖªÁâÐεÄËıßD£®ÒÑÖªÁâÐεÄÖܳ¤ºÍÃæ»ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¼ÆË㣺
£¨1£©$\sqrt{27}$¡Á$\sqrt{50}$¡Â$\sqrt{6}$
£¨2£©£¨$\sqrt{12}+\sqrt{20}$£©+£¨$\sqrt{3}-\sqrt{5}$£©
£¨3£©$\frac{2}{3}$$\sqrt{9x}$+6$\sqrt{\frac{x}{4}}$
£¨4£©£¨2$\sqrt{48}$-3$\sqrt{27}$£©¡Â$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®°ÑÔ²ÖùµÄ²àÃæÑظßÕ¹¿ª£¬µÃµ½µÄͼÐÎÊÇ£¨¡¡¡¡£©
A£®³¤·½ÐÎB£®Èý½ÇÐÎC£®³¤·½ÐλòÕý·½ÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆËãÏÂÁи÷ʽ£º
£¨1£©1-$\frac{1}{{2}^{2}}$=$\frac{3}{4}$£»
£¨2£©£¨1-$\frac{1}{{2}^{2}}$£©£¨1-$\frac{1}{{3}^{2}}$£©=$\frac{2}{3}$£»
£¨3£©£¨1-$\frac{1}{{2}^{2}}$£©£¨1-$\frac{1}{{3}^{2}}$£©£¨1-$\frac{1}{{4}^{2}}$£©=$\frac{5}{8}$£»
£¨4£©ÇëÄã¸ù¾ÝÉÏÃæËãʽËùµÃµÄ¼ò±ã·½·¨¼ÆËãÏÂʽ£º
£¨1-$\frac{1}{{2}^{2}}$£©£¨1-$\frac{1}{{3}^{2}}$£©£¨1-$\frac{1}{{4}^{2}}$£©¡­£¨1-$\frac{1}{{9}^{2}}$£©£¨1-$\frac{1}{1{0}^{2}}$£©¡­£¨1-$\frac{1}{{n}^{2}}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®»¯¼ò$\frac{{a}^{2}-4}{{a}^{2}+2a}$•$\frac{1}{a-2}$=$\frac{1}{a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸