精英家教网 > 初中数学 > 题目详情
20.将一长方形纸片,按图中的方式折叠,BC、BD为折痕,折叠后点E′刚好落在A′B上,则∠CBD的度数为(  )
A.60°B.75°C.90°D.95°

分析 由折叠的性质可知,∠ABC=∠A′BC,∠EBD=∠E′BD,根据平角=180°结合∠CBD=∠CBA′+∠E′BD,即可得出2∠CBD=180°,进而即可得出∠CBD=90°,此题得解.

解答 解:根据折叠的性质可知:∠ABC=∠A′BC,∠EBD=∠E′BD,
∵∠ABC+∠A′BC+∠E′BD+∠EBD=180°,∠CBD=∠CBA′+∠E′BD,
∴2∠CBD=180°,
∴∠CBD=90°.
故选C.

点评 本题考查了角的计算以及翻折变换,根据角的计算结合平角为180°找出2∠CBD=180°是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.解方程2(x+5)2-(x+3)2-(x+6)(x-6)=60.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.

结合小敏的思路作答
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:
(2)如图2,在(1)的条件下,若连接AC,BD.当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图①,点A、B分别在射线OM,ON上,且∠MON为钝角,现以线段OA、OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP和△OBQ,点C、D分别是OA、OB的中点,且四边形CODE是平行四边形.
(1)求证:△PCE≌△EDQ;
(2)如图②,延长PC,QD交于点R.若∠MON=150°,求证:△ABR为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.设二次函数的图象的顶点坐标为(-2,2),且过点(1,1),求这个函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列等式成立的是(  )
A.$\frac{2}{a}$+$\frac{3}{b}$=$\frac{5}{ab}$B.$\frac{3}{3a+b}$=$\frac{1}{a+b}$C.$\frac{ab}{ab-{b}^{2}}$=$\frac{a}{a-b}$D.$\frac{a}{-a+b}$=-$\frac{a}{a+b}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与A、O重合)的一个动点,过点P作PE⊥PB且交边CD于点E.
(1)求证:PB=PE;
(2)过点E作EF⊥AC于点F,如图2,若正方形ABCD的边长为2,则在点P运动的过程中,PF的长度是否发生变化?若不变,请直接写出这个不变的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.操作与探究:如图1,在锐角∠MON的边OM、ON上分别取点A、C,使OA=OC,在OC上取点B,作?ABCD,连接AC、BD交于点P,作射线OP.
(1)求证:OP平分∠MON.
(2)移动点B使∠BPC=∠MON,求证:?ABCD是矩形.
(3)如图3,在(2)的条件下,去OA中点Q连接QB,将∠BPC绕点P逆时针旋转适当的角度,得到∠EPF(点E、F分别是∠EPF的两边与QB的延长线、ON的交点).猜想线段PE与PF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在平面直角坐标中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0)、点B(点B在点A右侧),与y轴交于点C,tan∠CBA=$\frac{1}{2}$.
(1)求抛物线的表达式;
(2)将(1)中抛物线向下平移m个单位,点A、B、C平移后的位置分别为点A1、B1、C1,若点D(10,5)满足∠C1B1D=90°,求平移后抛物线的解析式.

查看答案和解析>>

同步练习册答案