精英家教网 > 初中数学 > 题目详情

观察图3和图4,分别说出它们由哪些基本图形组成,运用了哪些图形变换?

 

【答案】

(1)可由一个黑白相间的正方形通过平移变换得到;

(2)可由一个花瓣通过旋转变换得到.

【解析】

试题分析:比较复杂的图形,先找到组成这个图形的基本图案.

(1)可由一个黑白相间的正方形通过平移变换得到(或由两个黑白相间的三角形先通过旋转得到一个正方形,再平移);

(2)可由一个花瓣通过旋转变换得到.

考点:本题考查的是图形的变换

点评:三角形、四边形、圆都是我们所熟悉的基本图形,利用图形变换巧妙地将它们组合起来,就能形成一幅幅美丽的图案,这是常用的图案设计思路.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
分析:要证明AD平分∠BAC,只要证明
∠BAD
=
∠CAD

而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出
EF
AD
,这时再观察这两对角的关系已不难得到结论.
证明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面内,垂直与同一直线的两直线平行

∠1
=
∠BAD
(两直线平行,内错角相等),
∠2
=
∠CAD
(两直线平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分线的定义

查看答案和解析>>

科目:初中数学 来源: 题型:

9、小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.
请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;
(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它”的人数占本班学生数的百分数;
(3)观察图1和图2,你能得出哪些结论(只要写出一条结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

现有如图1的8张大小形状相同的直角三角形纸片,三边长分别是a、b、c.用其中4张纸片拼成如图2的大正方形(空白部分是边长分别为a和b的正方形);用另外4张纸片拼成如图3的大正方形(中间的空白部分是边长为c的正方形).

(一)观察:
从整体看,图2和图3的大正方形的面积都可以表示为(a+b)2,结论①依据整个图形的面积等于各部分面积的和.
图2中的大正方形的面积又可以用含字母a、b的代数式表示为:
a2+b2+2ab
a2+b2+2ab
,结论②
图3中的大正方形的面积又可以用含字母a、b、c的代数式表示为:
c2+2ab
c2+2ab
,结论③
(二)思考:
结合结论①和结论②,可以得到一个等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab

结合结论②和结论③,可以得到一个等式
a2+b2=c2
a2+b2=c2

(三)应用:
请你运用(二)中得到的结论任意选择下列两个问题中的一个解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分别以直角三角形三边为直径,向外作半圆(如图4),三个半圆的面积分别记作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本题作为附加题,做对加2分)
若分别以直角三角形三边为直径,向上作三个半圆(如图5),直角边a=5,b=12,斜边c=13,则表示图中阴影部分面积和的数值是:
A
A
  A.有理数     B.无理数     C.无法判断
请作出选择,并说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏省镇江市2006年初中毕业、升学统一考试数学试卷 题型:044

小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.

请你根据图中提供的信息,解答下列问题:

(1)在图1中,将“书画”部分的图形补充完整;

(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它”的人数占本班学生数的百分数;

(3)观察图1和图2,你能得出哪些结论?(只要写出一条结论).

查看答案和解析>>

同步练习册答案