精英家教网 > 初中数学 > 题目详情
已知如图,在△ABC中,∠B=30°,∠C=45°,AB-AC=2-
2
,求BC的长.
分析:过A作AD⊥BC于D,设AD=x,求出AB=2x,AC=
2
x,代入AB-AC=2-
2
,求出x,即可求出BC.
解答:解:
过A作AD⊥BC于D,设AD=x,
∠ADC=∠ADB=90°,
∵∠C=45°,∠B=30°,
∴AB=2x,∠DAC=45°=∠C,
∴CD=AD=x,
在Rt△CDA中,由勾股定理得:AC=
2
x,
在RT△BDA中,由勾股定理得:BD=
3
x,
∵AB-AC=2-
2

∴2x-
2
x=2-
2

∴x=1,
∴BC=CD+BD=1+
3
点评:本题考查了等腰三角形性质,勾股定理,含30度角的直角三角形性质,主要考查学生的推理能力和计算能力,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、已知如图:在△ABC中,AB=AC,D在BC上,且DE∥AC交AB于E,点F在AC上,且DF=DC.求证:
(1)△DCF∽△ABC;
(2)BD•DC=BE•CF

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点B、A、E恰好在同一条直线上,连接CE.
(1)则四边形DBCE是
形(填写:平行四边形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,请你求出四边形DBCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,在△ABC中,∠C=60°,AB=2
7
,AC=4,AD是边BC上的高,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,在△ABC中,AD平分∠BAC交BC于D,E为AD延长线上一点且∠ACE=∠B.求证:CD=CE.

查看答案和解析>>

同步练习册答案