精英家教网 > 初中数学 > 题目详情
7.把下列各式分解因式:
(1)-3x2y+12x2yz-9x3y2
(2)5a2b(a-b)3-15ab2(b-a)2
(3)a(x-y)-b(y-x)+c(x-y).

分析 (1)原式提取公因式即可得到结果;
(2)原式变形后,提取公因式即可得到结果;
(3)原式变形后,提取公因式即可得到结果.

解答 解:(1)原式=-3x2y(1-4z+3xy);
(2)原式=5a2b(a-b)3-15ab2(a-b)2=5ab(a-b)2(a-4b);
(3)原式=(x-y)(a+b+c).

点评 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.非负有理数是指正有理数和0.√(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.
(1)如果通道所占面积是整个长方形空地面积的$\frac{3}{8}$,求出此时通道的宽;
(2)能否设计出符合题目要求,且长方形花圃的形状与原长方形空地的形状相似的花圃?若能,求出此时通道的宽;若不能,则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下面的说法:(1)圆上各点到圆心的距离相等;(2)到圆心的距离相等的点都在圆上;(3)圆上的点到圆心的距离等于半径;(4)在平面内,圆是到定点的距离等于定长的点的集合.其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:$\frac{a+1+\sqrt{{a}^{2}-1}}{a+1-\sqrt{{a}^{2}-1}}$+$\frac{a+1-\sqrt{{a}^{2}-1}}{a+1+\sqrt{{a}^{2}-1}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.分解因式:3a2-24a+48=3(a-4)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,在平面直角坐标系中,抛物线y=-$\frac{1}{3}$x2+$\frac{2\sqrt{3}}{3}$x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点D,点C为抛物线的顶点,过B,C两点作直线BC,抛物线上的一点F的横坐标是-2$\sqrt{3}$,过点F作直线FG∥BC交x轴于点G.
(1)求直线BC的解析式和点G的坐标;
(2)点P是直线BC上方抛物线上的一动点,连接PG与直线BC交于点E,连接EF,PF,当△PEF的面积最大时,在x轴上有一点R,使PR+CR的值最小,求出点R的坐标,并直接写出PR+CR的最小值;
(3)如图2,连接AD,作AD的垂直平分线与x轴交于点K,平移抛物线,使抛物线的顶点C在射线BC上移动,平移的距离是t,平移后抛物线上点A,点C的对应点分别是点A′,点C′,连接A′C′,A′K,KC′,△A′KC′是否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
运动项目频数(人数)频率
篮球300.25
羽毛球m0.20
乒乓球36n
跳绳180.15
其它120.10
请根据以上图表信息解答下列问题:
(1)频数分布表中的m=24,n=0.3;
(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为108°;
(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是$\frac{1}{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知代数式3x-2y+1的值等于-1,则代数式2-3x+2y的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案