【题目】 今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
根据以上信息,解答以下问题:
(1)表中的x=______;
(2)扇形统计图中m=______,n=______,C等级对应的扇形的圆心角为______度;
(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
【答案】(1)14;(2)10、40、144;(3)图见解析,
【解析】
(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;
(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;
(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.
解:(1)∵被调查的学生总人数为6÷15%=40人,
∴x=40-(4+16+6)=14,
故答案为:14;
(2)∵m%=×100%=10%,n%=×10%=40%,
∴m=10、n=40,
C等级对应的扇形的圆心角为360°×40%=144°,
故答案为:10、40、144;
(3)列表如下:
a1 | a2 | b1 | b2 | |
a1 | a2,a1 | b1,a1 | b2,a1 | |
a2 | a1,a2 | b1,a2 | b2,a2 | |
b1 | a1,b1 | a2,b1 | b2,b1 | |
b2 | a1,b2 | a2,b2 | b1,b2 |
由表可知共有12种等可能结果,其中恰好选取的是a1和b1的有2种结果,
∴恰好选取的是a1和b1的概率为:=.
科目:初中数学 来源: 题型:
【题目】如图1,一枚质地均匀的骰子,骰子有六个面并分别标有数字1,2,3,4,5,6.如图2,有,,,,,,7个圈,相邻两个圈间距相等.跳圈游戏的规则为:游戏者每掷一次骰子,骰子向上的一面上的数字是几,就从圈开始向前连续跳几个间距.如:从圈起跳,第一次掷得3,就连续跳3个间距,跳到圈;若第二次掷得3,就从开始连续跳3个间距,跳到圈;若第二次掷得4,就从圈开始连续跳4个间距,跳到圈后返回到圈;…设游戏者从圈起跳.
(1)小明随机掷一次骰子,求跳到圈的概率;
(2)小亮随机掷两次骰子,用列表法或画树状图法求最后跳到圈的概率,并指出他与小明跳到圈的可能性一样吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数(a,b为常数,且)与反比例函数(m为常数,且)的图象交于点A(﹣2,1)、B(1,n).
(1)求反比例函数和一次函数的解析式;
(2)连结OA、OB,求△AOB的面积;
(3)直接写出当时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.
(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.
(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.
(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知抛物线y=x2+bx+c经过点A(-2,0),B(0,-4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,BP交x轴于点E,且S△PBO=S△PBC,求证:E是OC的中点;
(3)在(2)的条件下求点P的坐标.
(4)在(2)的条件下拋物线上是否存在点D,使△ACD的面积与△ABP的面积相等?若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发以2cm/s的速度沿B→A→C运动到点C停止.若△BPQ的面积为y运动时间为x(s),则下列图象中能大致反映y与x之间关系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,
(1)求m的取值范围;
(2)若x=1是方程的一个根,求m的值和另一个根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com