精英家教网 > 初中数学 > 题目详情

【题目】如图,的直径,的弦,的延长线相交于点,过点的切线交于点

1)求证:

2)若,求线段的长.

【答案】1)证明见解析;(2

【解析】

1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;

2)证明AOP∽△ABD,然后利用相似比求BP的长.

1)证明:连接OB,如图,

AD⊙O的直径,

∴∠ABD=90°

∴∠A+∠ADB=90°

∵BC为切线,
∴OB⊥BC

∴∠OBC=90°

∴∠OBA+∠CBP=90°

OA=OB

∴∠A=∠OBA

∴∠CBP=∠ADB

2)解:∵OP⊥AD

∴∠POA=90°

∴∠P+∠A=90°

∴∠P=∠D

∴△AOP∽△ABD

,即

∴BP=7

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点并在点处安装了测量器在点处测得该灯的顶点P的仰角为;再在的延长线上确定一点使米,在点处测得该灯的顶点的仰角为.若测量过程中测量器的高度始终为米,求“天下第一灯”的高度.,最后结果取整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DADB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN).

(1)求灯杆CD的高度;

(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,⊙O分别切ABMBCN,连接BOCOBOCO

1)求证:AC是⊙O的切线;

2)连接MC,若,求sinB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+c的图象过点A12),B32),C57).若点M(﹣2y1),N(﹣1y2),K8y3)也在二次函数yax2+bx+c的图象上,则y1y2y3从小到大的关系是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,∠BAC90°,直角∠EPF的顶点PBC的中点,两边PEPF分别交ABAC于点EF,现给出以下四个结论:(1AECF;(2EPF是等腰直角三角形;(3S四边形AEPFSABC;(4)当∠EPFABC内绕顶点P旋转时始终有EFAP.(点E不与AB重合),上述结论中是正确的结论的概率是(  )

A.1B.3C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两点在反比例函数k0x0)的图象上,ACy轴于点CBDx轴于点D,点A的横坐标为a,点B的横坐标为b,且ab

1)若△AOC的面积为4,求k值;

2)若a1bk,当AOAB时,试说明△AOB是等边三角形;

3)若OAOB,证明:OCOD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平行四边形ABCD中,AEBC,垂足为ECE=AB,点FCE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且∠DFC=EGC

1)求证:CG=DG

2)求证:

查看答案和解析>>

同步练习册答案