精英家教网 > 初中数学 > 题目详情
3.A、B两地相距20km,甲、乙两人分别从A、B两地出发,甲的速度是6km/h,乙的速度是8km/h.
(1)若两人相向而行,甲先出发半小时,乙出发几小时后与甲相遇?
(2)若两人同时出发同向而行,甲在前,乙在后,乙用多少小时可追上甲?

分析 (1)设需经过a小时两人相遇,根据甲先行30min,两人走的总路程为20km,列方程求解;
(2)设需经过c小时乙能追上甲,根据两人走的路程差为20km,列方程求解.

解答 解:(1)设甲出发a小时后相遇,依题意有
6a+8(a-0.5)=20
解得a=2.4.
答:乙出发2.4小时后相遇.
(2)设经过c小时乙能追上甲,依题意有
8c-6c=20
解得c=10.
答:经过10小时乙能追上甲.

点评 此题考查了一元一次方程的应用,涉及了比较复杂行程问题,既有相遇问题,也有追及问题.解题的关键是读懂题意,正确把握已知条件,准确列出方程解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.若关于x的方程x2-(m-1)2x+$\frac{1}{4}$=0有两个相等的实根,则m的值为m=0或m=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠C=90°,BC=6,AC=8,AB=10,请画出AB边上的高并求出这条高的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图所示,A、B在一水池放入两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=10m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:3$\sqrt{2}$($\sqrt{2}$-$\frac{1}{\sqrt{2}}$)-$\frac{\sqrt{48}-\sqrt{27}}{\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.当m在什么范围取值时,关于x的方程(m-2)x+2=1-m(4-x)有正数解?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知△ABD和△CEF都是斜边长为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E在同一直线上,DC=4.
(1)求证:四边形ABFE是平行四边形.
(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t s,
①当t为何值时,?ABFE是菱形?请说明理由.
②?ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列各式:$\frac{a}{2}$,$\frac{x-3}{x}$,$\frac{5+y}{π}$,$\frac{1}{m}$(x-y)中,是分式的共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.图中的虚线网格是等边三角形网格,它的每一个小三角形都是边长为1的等边三角形.
(1)边长为1的等边三角形的高=$\frac{\sqrt{3}}{2}$;
(2)图①中的?ABCD的对角线AC的长=$\sqrt{13}$;
(3)图②中的四边形EFGH的面积=8$\sqrt{3}$.

查看答案和解析>>

同步练习册答案