【题目】在中,若存在一个内角角度,是另外一个内角角度的倍(为大于1的正整数),则称为倍角三角形.例如,在中,,,,可知,所以为3倍角三角形.
(1)在中,,,则为________倍角三角形;
(2)若是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的,求的最小内角.
(3)若是2倍角三角形,且,请直接写出的最小内角的取值范围.
【答案】(1)4;(2)的最小内角为15°或9°或;(3)30°<x<45°.
【解析】
(1)根据三角形内角和定理求出∠C的度数,再根据倍角三角形的定义判断即可得到答案;
(2) 根据△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答即可得到答案;
(3) 可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.
解:(1)∵在中,,,
∴∠C=180°-55°-25°=100°,
∴∠C=4∠B,
故为4倍角三角形;
(2) 设其中一个内角为x°,3倍角为3x°,则另外一个内角为:
①当小的内角的度数是3倍内角的余角的度数的时,
即:x=(90°-3x),
解得:x=15°,
②3倍内角的度数是小内角的余角的度数的时,
即:3x=(90°-x),解得:x=9°,
③当时,
解得:,
此时:=,因此为最小内角,
因此,△DEF的最小内角是9°或15°或.
(3) 设最小内角为x,则2倍内角为2x,第三个内角为(180°-3x),由题意得:
2x<90°且180°-3x<90°,
∴30°<x<45°,
答:△MNP的最小内角的取值范围是30°<x<45°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( ).
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课题小组为了了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A,B,C,D四种型号的销售做了统计,绘制成如下两幅统计图(均不完整)
(1)该店第一季度售出这种品牌的电动自行车共多少辆?
(2)把两幅统计图补充完整;
(3)若该专卖店计划订购这四款型号的电动自行车1800辆,求C型电动自行车应订购多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE交BC于点F,连接BE.
(1)求证:AB⊥BE;
(2)当AD=BF时,求∠BEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程组和不等式解应用题:
为了响应某市的“四个一”工程,培养学生的爱国主义情怀,某校学生和带队老师在5月下旬某天集体乘车去参观抗日战争纪念馆.已知学生的数量是带队老师的12倍多20人,学生和老师的总人数共540人.
(1)请求出去参观抗日战争纪念馆学生和老师各多少人?
(2)如果学校准备租赁型大巴车和型大巴车共14辆,(其中型大巴车最多有7辆)已知型大巴车每车最多可以载35人,日租金为2000元,其中型大巴车每车最多可以载45人,日租金为3000元请求出最经济的租赁车辆方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,超过部分按2.6元/m3计费.设每户家庭的月用水量为xm3时,应交水费y元.
(1)试求出0≤x≤20和x>20时,y与x之间的函数关系;
(2)小明家第二季度用水量的情况如下:
月份 | 四月 | 五月 | 六月 |
用水量(m3) | 15 | 17 | 21 |
小明家这个季度共缴纳水费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A,点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1
(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB2 .
(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB′与AC相交于点Q.若AB= ,设AP=x,求y关于x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作探究:
(1)实践:如图1, 中,为边上的中线,的面积记为,的面积记为.则.
(2)探究:在图2中,、分别为四边形的边、的中点,四边形的面积记为,阴影部分面积记为,则和之间满足的关系式为______:
(3)解决问题:
在图3中,、、、分别为任意四边形的边、、、的中点,并且图中阴影部分的面积为平方厘米,求图中四个小三角形的面积和,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com