精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线c1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线c1解析式;
(2)求四边形ABDE的面积;
(3)△AOB与△BDE是否相似,如果相似,请予以证明;如果不相似,请说明理由;
(4)设抛物线c1的对称轴与x轴交于点F,另一条抛物线c2经过点E(抛物线c2与抛物线c1不重合),且顶点为M(a,b),对称轴与x轴相交于点G,且以M,G,E为精英家教网顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)
分析:(1)根据图象可得出A、B、C三点的坐标,然后用待定系数法即可求出抛物线的解析式.
(2)由于四边形ABDE不是规则的四边形,因此可过D作DF⊥x轴于F,将四边形ABDE分成△AOB,梯形BOFD和△DFE三部分来求.
(3)可先根据坐标系中两点间的距离公式,分别求出AB、BE、DE、BD的长,然后看两三角形的线段是否对应成比例即可.
(4)要使两三角形全等,那么两直角三角形的两直角边应对应相等.
①当EF=EG=1,DF=MG=3,此时M点的坐标可能为(5,4),(5,-4),(1,-4).
②当EF=MG=1,DF=EG=3,此时M点的坐标可能是(7,1),(7,-1),(-1,1),(-1,-1).
综上所述可得出a、b的值.
解答:解:(1)设c1的解析式为y=ax2+bx+c,由图象可知:c1过A(-1,0),B(0,3),C(2,3)三点.
a-b+c=0
c=3
4a+2b+c=3

解得:
a=-1
b=2
c=3

∴抛物线c1的解析式为y=-x2+2x+3.精英家教网

(2)∵y=-x2+2x+3=-(x-1)2+4.
∴抛物线c1的顶点D的坐标为(1,4);
过D作DF⊥x轴于F,由图象可知:OA=1,OB=3,OF=1,DF=4;
令y=0,则-x2+2x+3=0,
解得x1=-1,x2=3
∴OE=3,则FE=2.
S△ABO=
1
2
OA•OB=
1
2
×1×3=
3
2

S△DFE=
1
2
DF•FE=
1
2
×4×2=4;
S梯形BOFD=
1
2
(BO+DF)•OF=
7
2

∴S四边形ABDE=S△AOB+S梯形BOFD+S△DFE=9(平方单位).

(3)如图,过B作BK⊥DF于K,则BK=OF=1.精英家教网
DK=DF-OB=4-3=1.
∴BD=
DK2+BK2
=
2

又DE=
DF2+FE2
=2
5

AB=
10
,BE=3
2

在△ABO和△BDE中,
AO=1,BO=3,AB=
10

BD=
2
,BE=3
2
,DE=2
5

AO
BD
=
BO
BE
=
AB
DE
=
1
2

∴△AOB∽△DBE.

(4)
a1=5
b1=4
a2=5
b2=-4
a3=7
b3=-1
a4=7
b4=1
a5=1
b5=-4
a6=-1
b6=-1
a7=-1
b7=1
点评:本题着重考查了待定系数法求二次函数解析式、三角形相似、图形面积的求法等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案