精英家教网 > 初中数学 > 题目详情

【题目】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B,C重合),经过点O、P折叠该纸片,得点B′和折痕OP(如图①)经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ(如图②),当点C′恰好落在OA上时,点P的坐标是

【答案】
【解析】解:
∵把△OPB沿OP折叠,使点C落在点C′处,
∴BP=PB′,OB=OB′=6,∠A=∠OB′P=90°,
∵把△CPQ沿PQ折叠,使点D落在直线OA上的点C′处,
∴CP=C′P,CQ=C′Q,∠PC′Q=∠C=90°,
设BP=B′P=x,则PC=PC′=11﹣x,
∵BC∥AC,
∴∠1=∠EPOA,
∵∠1=∠2,
∴∠2=∠C′OP,
∴OC′=PC′=11﹣x,
∴B′C′=11﹣2x,
在Rt△OB′C′中,
∵OC′2=OB′2+B′C′2
∴62+(11﹣2x)2=(11﹣x)2
解得x=
∴AE=
故答案为
设PB=B′P=x,则DE=ED′=15﹣x,只要证明PC=PC′=11﹣x,在Rt△OB′C′中,根据OC′2=OB′2+B′C′2 , 列出方程即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.

探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:

∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.

∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.

∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A

探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.

1求该函数的解析式,并画出它的图象;

2如果这条直线经过点P(m,2),求m的值;

3若O为坐标原点,求直线OP的解析式;

4求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解同学对体育活动的喜爱情况,某校设计了“你最喜欢的体育活动是哪一项(仅限一项)”的调查问卷该校对本校学生进行随机抽样调查,以下是根据调查数据得到的统计图的一部分请根据以上信息解答以下问题:

(1)该校对多少名学生进行了抽样调查?

(2)请补全图1并标上数据 图2中x=

(3)若该校共有学生900人,请你估计该校最喜欢跳绳项目的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱我中华中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:87988;乙:79699,则下列说法中错误的是( )

A. 甲、乙得分的平均数都是8 B. 甲得分的众数是8,乙得分的众数是9

C. 甲得分的中位数是9,乙得分的中位数是6 D. 甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.

(1)试求抛物线的解析式;
(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在对角线BD不与点重合于点于点F,连结AG

写出线段长度之间的数量关系,并说明理由;

若正方形ABCD的边长为,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1 , 四边形EFQP的面积为S2 , 四边形PQCB的面积为S3

(1)求证:EF+PQ=BC;
(2)若S1+S3=S2 , 求的值;
(3)若S3﹣S1=S2 , 直接写出的值.

查看答案和解析>>

同步练习册答案