精英家教网 > 初中数学 > 题目详情

如图所示,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动.当点P的横坐标为12时,直线OP与⊙A的位置关系是________.

答案:相交
解析:

如图所示,作ACOP,点C为垂足.

∵∠ACP=OBP=90°,∠1=1

∴△ACP∽△OBP,∴

RtOBP中,

AP=124=8,∴

OP与⊙A相交.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班.妈妈骑车走了一会接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.他们离家的路程y (米)与时精英家教网间x (分)的函数图象如图所示.已知A点坐标A(10,-2500),C(20,0)C点坐标为(20,0).
(1)在图中,小明离家的路程y (米)与时间x (分)的函数图象是线段;
A、OA     B、OB      C、OC      D、AB
(2)分别求出线段OA与AB的函数表达式(不需要写出自变量的取值范围);
(3)已知小欣步行速度为每分50米,则小欣家与学校距离为多少米,小欣早晨上学需要多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

水务部门为加强防汛工作,决定对程家山水库进行加固.原大坝的横断面是梯形ABCD,如图所示,已知迎水面AB的长为10米,∠B=60°,背水面精英家教网DC的长度为10
3
米,加固后大坝的横断面为梯形ABED.若CE的长为5米.
(1)已知需加固的大坝长为100米,求需要填方多少立方米;
(2)求新大坝背水面DE的坡度.(计算结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
①试说明四边形AEDF为平行四边形;
②若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD长20米,在楼梯水平长度(BC)不发生改变的前提下,楼梯的倾斜角由30°增大到45°,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中数学 来源:2010年江苏省南京市浦口区中考数学二模试卷(解析版) 题型:解答题

(2010•鼓楼区二模)早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班.妈妈骑车走了一会接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.他们离家的路程y (米)与时间x (分)的函数图象如图所示.已知A点坐标A(10,-2500),C(20,0)C点坐标为(20,0).
(1)在图中,小明离家的路程y (米)与时间x (分)的函数图象是线段;
A、OA     B、OB      C、OC      D、AB
(2)分别求出线段OA与AB的函数表达式(不需要写出自变量的取值范围);
(3)已知小欣步行速度为每分50米,则小欣家与学校距离为多少米,小欣早晨上学需要多少分钟?

查看答案和解析>>

同步练习册答案