20£®Èçͼ£¬Å×ÎïÏßy=-1.25x2+4.25x+1ÓëyÖá½»ÓÚAµã£¬¹ýµãAµÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚÁíÒ»µãB£¬¹ýµãB×÷BC¡ÍxÖᣬ´¹×ãΪµãC£¨3£¬0£©
£¨1£©ÇóÖ±ÏßABµÄº¯Êý¹Øϵʽ£»
£¨2£©¶¯µãPÔÚÏ߶ÎOCÉÏ´ÓÔ­µã³ö·¢ÒÔÿÃëÒ»¸öµ¥Î»µÄËÙ¶ÈÏòCÒƶ¯£¬¹ýµãP×÷PN¡ÍxÖᣬ½»Ö±ÏßABÓÚµãM£¬½»Å×ÎïÏßÓÚµãN£®ÉèµãPÒƶ¯µÄʱ¼äΪtÃ룬MNµÄ³¤¶ÈΪs¸öµ¥Î»£¬ÇósÓëtµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ötµÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèÔÚ£¨2£©µÄÌõ¼þÏ£¨²»¿¼ÂǵãPÓëµãO£¬µãCÖغϵÄÇé¿ö£©£¬Á¬½ÓCM£¬BN£¬µ±tΪºÎֵʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ¿ÎʶÔÓÚËùÇóµÄtÖµ£¬Æ½ÐÐËıßÐÎBCMNÊÇ·ñÁâÐΣ¿Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°Ñx=0´úÈëy=-1.25x2+4.25x+1£¬Çó³öyµÄÖµ£¬µÃµ½Aµã×ø±ê£¬°Ñx=3´úÈëy=-1.25x2+4.25x+1£¬Çó³öyµÄÖµ£¬µÃµ½Bµã×ø±ê£¬ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£¬½«A¡¢BÁ½µãµÄ×ø±ê´úÈ룬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£»
£¨2£©¸ù¾Ý·³Ì=ËٶȡÁʱ¼äµÃ³öOP=1•t=t£¬ÄÇôP£¨t£¬0£©£¨0¡Üt¡Ü3£©£¬ÔÙÇó³öM¡¢NµÄ×ø±ê£¬ÀûÓÃs=MN=NP-MP¼´¿ÉÇó³ösÓëtµÄº¯Êý¹Øϵʽ£»
£¨3£©ÓÉÓÚBC¡ÎMN£¬ËùÒÔµ±BC=MNʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ¬¸ù¾ÝMN=BCÁгö·½³Ì-$\frac{5}{4}$t2+$\frac{15}{4}$t=$\frac{5}{2}$£¬½â·½³ÌÇó³ötµÄÖµ£¬µÃ³öt=1»ò2ʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ»¸ù¾ÝÓÐÒ»×éÁÚ±ßÏàµÈµÄƽÐÐËıßÐÎÊÇÁâÐΣ¬·Öt=1¡¢t=2Á½ÖÖÇé¿ö£¬¼ÆËãMNÓëMC£¬±È½Ï´óС£¬Èç¹ûÏàµÈ£¬ÔòËıßÐÎBCMNÊÇÁâÐΣ»Èç¹û²»ÏàµÈ£¬ÔòËıßÐÎBCMN²»ÊÇÁâÐΣ®

½â´ð ½â£º£¨1£©¡ßµ±x=0ʱ£¬y=1£¬¡àA£¨0£¬1£©£®
µ±x=3ʱ£¬y=-$\frac{5}{4}$¡Á32+$\frac{17}{4}$¡Á3+1=2.5£¬¡àB£¨3£¬2.5£©£¬
ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£¬
Ôò£º$\left\{\begin{array}{l}{b=1}\\{3k+b=2.5}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{b=1}\\{k=\frac{1}{2}}\end{array}\right.$£¬
¡àÖ±ÏßABµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£»

£¨2£©¡ß¶¯µãPÔÚÏ߶ÎOCÉÏ´ÓÔ­µã³ö·¢ÒÔÿÃëÒ»¸öµ¥Î»µÄËÙ¶ÈÏòCÒƶ¯£¬µãPÒƶ¯µÄʱ¼äΪtÃ룬
¡àOP=1•t=t£¬
¡àP£¨t£¬0£©£¨0¡Üt¡Ü3£©£¬
¡ß¹ýµãP×÷PN¡ÍxÖᣬ½»Ö±ÏßABÓÚµãM£¬½»Å×ÎïÏßÓÚµãN£¬
¡àM£¨t£¬$\frac{1}{2}$t+1£©£¬N£¨t£¬-$\frac{5}{4}$t2+$\frac{17}{4}$t+1£©£¬
¡às=MN=NP-MP=-$\frac{5}{4}$t2+$\frac{17}{4}$t+1-£¨$\frac{1}{2}$t+1£©=-$\frac{5}{4}$t2+$\frac{15}{4}$t£¨0¡Üt¡Ü3£©£»

£¨3£©ÓÉÌâÒ⣬¿ÉÖªµ±MN=BCʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ¬
´Ëʱ£¬ÓÐ-$\frac{5}{4}$t2+$\frac{15}{4}$t=$\frac{5}{2}$£¬
½âµÃt1=1£¬t2=2£¬
ËùÒÔµ±t=1»ò2ʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ®
¢Ùµ±t=1ʱ£¬MP=$\frac{3}{2}$£¬NP=4£¬¹ÊMN=NP-MP=$\frac{5}{2}$£¬
ÓÖÔÚRt¡÷MPCÖУ¬MC=$\sqrt{M{P}^{2}+P{C}^{2}}$=$\frac{5}{2}$£¬¹ÊMN=MC£¬´ËʱËıßÐÎBCMNΪÁâÐΣ»
¢Úµ±t=2ʱ£¬MP=2£¬NP=$\frac{9}{2}$£¬¹ÊMN=NP-MP=$\frac{5}{2}$£¬
ÓÖÔÚRt¡÷MPCÖУ¬MC=$\sqrt{M{P}^{2}+P{C}^{2}}$=$\sqrt{5}$£¬¹ÊMN¡ÙMC£¬´ËʱËıßÐÎBCMN²»ÊÇÁâÐΣ®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½ÀûÓôý¶¨ÏµÊý·¨ÇóÖ±ÏߵĽâÎöʽ£¬Ò»´Îº¯Êý¡¢¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬Â·³Ì¡¢ËÙ¶ÈÓëʱ¼äµÄ¹Øϵ£¬Æ½ÐÐËıßÐΡ¢ÁâÐεÄÅж¨£¬¹´¹É¶¨ÀíµÈ֪ʶ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®4µÄËãÊõƽ·½¸ùÊÇ$\sqrt{2}$B£®27µÄÁ¢·½¸ùÊÇ¡À3
C£®$\sqrt{16}$µÄƽ·½¸ùÊÇ¡À2D£®$\sqrt{9}$µÄƽ·½¸ùÊÇ¡À3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³¹¤³§ÏÖÔÚƽ¾ùÿÌì±ÈÔ­¼Æ»®¶àÉú²ú50̨»úÆ÷£¬ÏÖÔÚÉú²ú800̨»úÆ÷ËùÓÃʱ¼äÓëÔ­¼Æ»®Éú²ú600̨»úÆ÷ËùÓÃʱ¼äÏàͬ£¬ÇóÔ­¼Æ»®Æ½¾ùÿÌìÉú²ú»úÆ÷µĄ̈Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½â·½³Ì£º£¨x+1£©£¨x-3£©=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{5x+3y=23}\\{x+y=p}\end{array}\right.$ µÄ½âÊÇÕýÕûÊý£¬ÇóÕûÊýpµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª$\left\{\begin{array}{l}{x=0.5}\\{y=1}\end{array}\right.$ÊÇ·½³Ì×é$\left\{\begin{array}{l}{ax-3y=5}\\{2x+by=1}\end{array}\right.$µÄ½â£¬Ôòa=16£¬b=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{3x+2y=1¢Ù}\\{3x-2y=m¢Ú}\end{array}\right.$µÄ½â¶¼²»´óÓÚ1£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ð¡Ã÷ÓÃ60cm³¤µÄÌú˿Χ³ÉÒ»¸ö³¤·½ÐΣ¬ÒªÊ¹³¤±È¿í¶à4cm£¬ÔòΧ³ÉµÄ³¤·½ÐεÄÃæ»ýΪ221cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺
£¨1£©$9\sqrt{3}+5\sqrt{12}-3\sqrt{48}$
£¨2£©$2\sqrt{12}¡Â\frac{1}{2}\sqrt{50}¡Á2\sqrt{\frac{3}{4}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸