精英家教网 > 初中数学 > 题目详情

如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=140,则∠EOD=________度.

70
分析:由图形可知∠DOE=∠DOC+∠EOC,然后根据角平分线的性质,可推出∠DOC=∠BOC,∠EOC=∠AOC,由此可推出∠DOE=∠AOB,最后根据∠AOB的度数,即可求出结论.
解答:∵OD是∠BOC的平分线,OE是∠AOC的平分线,
∴∠DOC=∠BOC,∠EOC=∠AOC,
∴∠DOE=∠DOC+∠EOC=∠AOB,
∵∠AOB=140°,
∴∠EOD=70°.
故答案为70.
点评:本题主要考查角平分线的性质,关键在于运用数形结合的思想推出∠DOE=∠DOC+∠EOC=∠AOB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△AOB中,∠A=∠B,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点精英家教网E、F
(1)求证:AB是⊙O的切线;
(2)当△AOB腰上的高等于底边的一半,且AB=4
3
时,求劣弧ECF的长及阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,△AOB中,∠B=30度.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,那么AB扫过的区域(图中阴影部分)的面积是
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB中,OA=OB,∠AOB=90゜,BD平分∠ABO交OA于D,AE⊥BD于E.
求证:BD=2AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交.
求证:AB是⊙O的切线.

查看答案和解析>>

同步练习册答案