精英家教网 > 初中数学 > 题目详情
3.已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC=$\frac{1}{2}$?请说明理由.

分析 (1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出$\frac{PM}{PC}$=$\frac{AM}{BC}$=$\frac{PA}{PB}$,由△BAP∽△BNA,推出$\frac{PA}{PB}$=$\frac{AN}{BC}$,得到$\frac{AN}{AB}$=$\frac{AM}{BC}$,由此即可证明.
(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=$\frac{1}{2}$,推出矛盾即可.

解答 (1)证明:如图一中,∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,
∵△PBC∽△PAM,
∴∠PAM=∠PBC,$\frac{PM}{PC}$=$\frac{AM}{BC}$=$\frac{PA}{PB}$,
∴∠PBC+∠PBA=90°,
∴∠PAM+∠PBA=90°,
∴∠APB=90°,
∴AP⊥BN,
∵∠ABP=∠ABN,∠APB=∠BAN=90°,
∴△BAP∽△BNA,
∴$\frac{PA}{PB}$=$\frac{AN}{BC}$,
∴$\frac{AN}{AB}$=$\frac{AM}{BC}$,
∵AB=BC,
∴AN=AM.
(2)解:①仍然成立,AP⊥BN和AM=AN.
理由如图二中,∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,
∵△PBC∽△PAM,
∴∠PAM=∠PBC,$\frac{PM}{PC}$=$\frac{AM}{BC}$=$\frac{PA}{PB}$,
∴∠PBC+∠PBA=90°,
∴∠PAM+∠PBA=90°,
∴∠APB=90°,
∴AP⊥BN,
∵∠ABP=∠ABN,∠APB=∠BAN=90°,
∴△BAP∽△BNA,
∴$\frac{PA}{PB}$=$\frac{AN}{AB}$,
∴$\frac{AN}{AB}$=$\frac{AM}{BC}$,
∵AB=BC,
∴AN=AM.
②这样的点P不存在.
理由:假设PC=$\frac{1}{2}$,
如图三中,以点C为圆心$\frac{1}{2}$为半径画圆,以AB为直径画圆,
CO=$\sqrt{B{C}^{2}+B{O}^{2}}$=$\frac{\sqrt{5}}{2}$>$\frac{1}{2}$+$\frac{1}{2}$,
∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,
∴假设不可能成立,
∴满足PC=$\frac{1}{2}$的点P不存在.

点评 本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=4,CD=1,则EC的长为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,小明在绣湖公园的A处正面观测解百购物中心墙面上的电子屏幕,测得屏幕上端C处的仰角为30°,接着他正对电子屏幕方向前进7m到达B处,又测得该屏幕上端C处的仰角为45°.已知电子屏幕的下端离开地面距离DE为4m,小杨的眼睛离地面1.60m,电子屏幕的上端与墙体的顶端平齐.求电子屏幕上端与下端之间的距离CD(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.六边形的内角和是720°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b-a=2时,a,b的大黄金数与小黄金数之差m-n=2$\sqrt{5}$-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(  )
A.$\frac{\sqrt{3}}{8}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{8}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)(  )
A.169米B.204米C.240米D.407米

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,直线y=$\frac{1}{2}$x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为(-8,-3)或(4,3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.对于二次函数y=-$\frac{1}{4}{x^2}$+x-4,下列说法正确的是(  )
A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值-3
C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点

查看答案和解析>>

同步练习册答案