【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?
(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?
【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)或.
【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,把点C的坐标代入即可求得a的值;
(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;
(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.
解:(1)由矩形的性质可得点A(1,4),
∵抛物线的顶点为A,
设抛物线的解析式为y=a(x-1)2+4,
代入点C(3, 0),可得a=-1.
∴y=-(x-1)2+4=-x2+2x+3.
(2)∵P(,4),
将代入抛物线的解析式,y=-(x-1)2+4=,
∴M(, ),
设直线AC的解析式为,
将A(1,4),C(3,0)代入,得:,
将代入得,
∴N(,),
∴MN ,
∴,
∴当t=2时,△AMC面积的最大值为1.
(3)①如图1,当点H在N点上方时,
∵N(,),P(,4),
∴PN=4—()==CQ,
又∵PN∥CQ,
∴四边形PNCQ为平行四边形,
∴当PQ=CQ时,四边形FECQ为菱形,
PQ2=PD2+DQ2 =,
∴,
整理,得.解得, (舍去);
②如图2当点H在N点下方时,
NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,
NQ2=CQ2,得:.
整理,得. .所以,(舍去).
“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.
科目:初中数学 来源: 题型:
【题目】点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )
A.(﹣3,2)
B.(﹣2,﹣3)
C.(﹣2,3)
D.( 3,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10):
为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元.
(1)求y关于x的函数关系式;
(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句中正确的是( )
A.正整数和负整数统称为整数
B.有理数和无理数统称为实数
C.开方开不尽的数和π统称为无理数
D.正数、0、负数统称为有理数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com