精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AD3CD4,点PAC上一个动点(点P与点AC不重合),过点P分别作PEBC于点EPFBCAB于点F,连接EF,则EF的最小值为_____

【答案】

【解析】

连接BP,利用勾股定理列式求出AC,判断出四边形BFPE是矩形;根据矩形的对角线相等可得EFBP,再根据垂线段最短可得BPAC时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.

证明:如图,连接BP

∵∠BD90°AD3CD4

AC5

PEBC于点EPFBCB90°

四边形PEBF是矩形;

EFBP

由垂线段最短可得BPAC时,线段EF的值最小,

此时,SABCBCABACCP

×4×3×5CP

解得CP

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(-4n)、B2,-6)是一次函数y1k1xb与反比例函数y2的两个交点,直线ABx轴交于点C

1)求两函数解析式;(2)求△AOB的面积;

(3)根据图象回答:y1y2时,自变量x的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是边CD上一点(E不与点CD重合),连结BE,取BE的中点M,连结CM.过点CCGBEAD于点G,连结EGMG.若CM=3,则四边形GMCE的面积为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有6张正面分别标有数字﹣101234的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x22x+a2x轴有交点,且关于x的分式方程有解的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC 中,∠ACB=90°AC=6cmBC=8cm,点 P A 点出发沿 A-C-B 路径向终点运动,终点为 B点;点 Q B 点出发沿 B-C-A 路径向终点运动,终点为 A 点,点 P Q 分别以 1cm/s xcm / s 的运动速度 同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过 P Q PE⊥ l EQF⊥ l F.

(1)如图,当 x 2 时,设点 P 运动时间为 ts ,当点 P AC 上,点 Q BC 上时:

用含 t 的式子表示 CP CQ,则 CP= cmCQ= cm

t 2 ,PEC QFC 全等吗?并说明理由;

(2)请问: x 3 时,PEC QFC 有没有可能全等?若能,直接写出符合条件的 t 的值;若不能,请说明 理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,抛物线y=ax2+bx+c (a≠O)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,O),抛物线的对称轴是直线x=-3,且经过A、C两点的直线为y=kx+4.

(1)求抛物线的函数表达式;

(2)将直线AC向下平移m个单位长度后,得到的直线l与抛物线只有一个交点D,求m的值;

(3)抛物线上是否存在点Q,使点Q到直线AC的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC的边AB上一点,CEABDEAC于点F,若FA=FC

1)求证:四边形ADCE是平行四边形;

2)若AEECEF=EC=5,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本小题满分8如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形

1试判断四边形ABCD的形状,并加以证明;

2若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点B60)的直线AB与直线OA相交于点A42),动点M在线段OA和射线AC上运动.

1)求直线AB的解析式.

2)求△OAC的面积.

3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案