精英家教网 > 初中数学 > 题目详情

作业宝如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.
(1)求证:∠APB=∠BPH;
(2)求证:AP+HC=PH;
(3)当AP=1时,求PH的长.

(1)证明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四边形ABCD为正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.

(2)证明:过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,

∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH与Rt△BQH中,

∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.

(3)解:由(2)知,AP=PQ=1,
∴PD=3.
设QH=HC=x,则DH=4-x.
在Rt△PDH中,PD2+DH2=PH2
即32+(4-x)2=(x+1)2
解得x=2.4,
∴PH=3.4.
分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH;
(3)设QH=HC=x,则DH=4-x.在Rt△PDH中,根据勾股定理列出关于x的方程求解即可.
点评:此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.
(1)求证:∠APB=∠BPH;
(2)求证:AP+HC=PH;
(3)当AP=1时,求PH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(
12
a<b<a
)如图1,取出两张小卡片放入大卡片内拼成的图案如图2,再重新用三张小正方形卡片放入大卡片内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab-6,则小正方形卡片的面积b2=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.

查看答案和解析>>

同步练习册答案