精英家教网 > 初中数学 > 题目详情
20.已知α,β是方程x2+2014x+1=0的两个根,则(1+2015α+α2)(1+2015β+β2)的值为(  )
A.1B.2C.3D.4

分析 根据α、β是方程x2+2014x+1=0的两实数根,把x=α与x=β代入得到关系式,利用根与系数得到关系式,原式变形后代入计算即可求出值.

解答 解:∵α、β是方程x2+2014x+1=0的两实数根,
∴α2+2014α+1=0,β2+2014β+1=0,αβ=1,
∴α2+1=-2014α,β2+1=-2014β,
则(1+2015α+α2)(1+2015β+β2)=α•β=αβ=1,
故选A.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.也考查了一元二次方程的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.下列计算正确的是(  )
A.a6÷a2=a3B.(a23=a5C.$\sqrt{16}$=±4D.$\root{3}{-8}$=-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,∠C=90°,∠CAB,∠CBA的平分线相交于点D,DE⊥BC于点E,DF⊥AC于点F,求证:
(1)四边形CFDE是矩形;
(2)四边形CFDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1cm,整点P从原点O出发,作向上或向右运动,速度为1cm/s.当整点P从原点出发1秒时,可到达整点(1,0)或(0,1);当整点P从原点出发2秒时,可到达整点(2,0)、(0,2)或(1,1);当整点P从原点出发4秒时,可以得到的整点的个数为5个.当整点P从原点出发n秒时,可到达整点(x,y),则x、y和n的关系为x+y=n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,一点光源在(0,3)处,沿所示的方向发射,长方形四条边上有四个平面镜,与坐标平面垂直放置,设第一个入射点P1坐标为(3,0),则第二个入射点P2(6,3),第三个入射点P3(3,6),作出光路图,并写出第2013个入射点P2013(3,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,△ABC中,AB=AC,BD是AC边上的高
①求作:AB边上的高CE(垂足为E)(保留作图痕迹,不必写出作图过程)
②求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.
【初步体验】
(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=3,$\frac{FB}{GC}$=2.
(2)如图2,在△ABC 中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).
求证:∠M=∠N.
【深入探究】
上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:
(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.
满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②CM平分∠ACE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.0.5的倒数为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案