精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,O是坐标原点,A(3,0)、B(m,
6
5
)是以OA为直径的⊙M上的两点,且tan∠AOB=
1
2
,BH⊥x轴,垂足为H
(1)求H点的坐标;
(2)求图象经过A、B、O三点的二次函数的解析式;
(3)设点C为(2)中的二次函数图象的顶点,问经过B、C两点的直线是否与⊙M相切,请说明理由.
注:抛物线y=ax2+bx+c(c≠0)的顶点为(-
b
2a
4ac-b2
4a
)
(1)∵tan∠AOB=
1
2
,∴
BH
OH
=
1
2

∵B(m,
6
5
),∴OH=
12
5

∴H点的坐标(
12
5
,0);

(2)设二次函数的解析式为y=ax2+bx+c,
∴B(
12
5
6
5
),
将A、B、O三点坐标代入得,
144
25
a+
12
5
b+c=
6
5
9a+3b+c=0
c=0

解得
a=-
5
6
b=
5
2
c=0

∴二次函数的解析式为y=-
5
6
x2+
5
2
x;

(3)∵抛物线y=ax2+bx+c(c≠0)的顶点为(-
b
2a
4ac-b2
4a
)

∴C(
3
2
15
8
),
设直线BC的解析式为y=kx+b,将点B、C坐标代入得,
12
5
k+b=
6
5
3
2
k+b=
15
8

解得k=-
3
4
,b=3,
∴直线BC的解析式为y=-
3
4
x+3,
∵M(1.5,0),
∴直线BM的解析式为y=-
4
3
x-2,
∴BM⊥BC,
∴经过B、C两点的直线与⊙M相切.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2-x+n的对称轴是直线x=2.
(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,
PE
PF
的值是否发生变化?若发生变化,说明理由;若不发生变化,求出
PE
PF
的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).设抛物线的顶点为D,求解下列问题:
(1)求抛物线的解析式和D点的坐标;
(2)过点D作DFy轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;
(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式;
(4)当
1
2
<x<4时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线C1:y=-2x2+bx-6与抛物线C2关于原点对称,抛物线C1与x轴分别交于A(1,0),B(m,0),顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N.
(1)求m的值;
(2)求抛物线C2的解析式;
(3)若抛物线C1与抛物线C2同时以每秒1个单位的速度沿x轴方向分别向左、向右运动,此时记A,B,C,D,M,N在某一时刻的新位置分别为A′,B′,C′,D′,M′,N′,当点A′与点D′重合时运动停止.在运动过程中,四边形B′M′C′N′能否形成矩形?若能,求出此时运动时间t(秒)的值,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△OAB的顶点A(-6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.
(1)写出C,D两点的坐标;
(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;
(3)证明AB⊥BE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2的图象过(2,1),则二次函数的表达式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则abc______0(填“>”或“<”)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长度一定的不锈钢材料设计成外观为矩形的框架(如图1,2中的一种).

设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD,AB平行)
(Ⅰ)在图1中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?
(Ⅱ)在图2中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?

查看答案和解析>>

同步练习册答案