精英家教网 > 初中数学 > 题目详情

【题目】如图,点AB分别在反比例函数y= (k10) y= (k20)的图象上,连接ABy轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.

【答案】8

【解析】

ACy轴于CBDy轴于D,如图,先证明ACP≌△BDP得到SACP=SBDP,利用等量代换和k的几何意义得到=SAOC+SBOD=×|k1|+|k2|=4,然后利用k10k20可得到k2-k1的值.

解:

ACy轴于CBDy轴于D,如图,

∵点A与点B关于P成中心对称.
P点为AB的中点,
AP=BP
ACPBDP


∴△ACP≌△BDPAAS),
SACP=SBDP
SAOB=SAPO+SBPO=SAOC+SBOD=×|k1|+|k2|=4

|k1|+|k2|=8
k10k20
k1-k2=8
故答案为8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,的半径为的直径,上一点,连接.为劣弧的中点,过点,垂足为于点,交的延长线于点.

1)求证:的切线;

2)连接,若,如图2.

①求的长;

②图中阴影部分的面积等于_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】423日,为迎接世界读书日,某书城开展购书有奖活动.顾客每购书满100元获得一次摸奖机会,规则为:一个不透明的袋子中装有4个小球,小球上分别标有数字1234,它们除所标数字外完全相同,摇匀后同时从中随机摸出两个小球,则两球所标数字之和与奖励的购书券金额的对应关系如下:

两球所标数字之和

3

4

5

6

7

奖励的购书券金额(元)

0

0

30

60

90

1)通过列表或画树状图的方法计算摸奖一次获得90元购书券的概率;

2)书城规定:如果顾客不愿意参加摸奖,那么可以直接获得30元的购书券.参加摸奖直接获得购书券两种方式中,你认为哪种方式对顾客更合算?请通过求平均教的方法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商店以5/千克的价格购进一批水果进行销售,运输过程中质量耗5%,运输费用是0.7/千克,假设不计其他费用

1)商店要把水果售完至少定价为多少元才不会亏本?

2)在销售过科中,商店发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?

3)该商店决定每销售一千克水果就捐赠a元利润(a≥1)给希望工程,通过销售记录发现,销侮价格大于每千克11元时,扣除捐赠后每天的利润随x增大而减小,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是矩形;

(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在等腰△ABC中,ABAC10cmBC16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为ts)(0t10),解答下列问题:

1)当t为何值时,△BDE的面积为7.5cm2

2)在点DE的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,AB6BC4,点E在边AB上(不与点AB重合),过点DDFDE,交边BC的延长线于点F

1)求证:DAE∽△DCF

2)设线段AE的长为x,线段BF的长为y,求yx之间的函数关系式.

3)当四边形EBFD为轴对称图形时,则cosAED的值为 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图1,抛物线yax2+bx3x轴交于A(﹣20),B40)两点,与y轴交于点C

1)求抛物线的表达式;

2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;

3)如图2,当POB的中点时,过点PPDx轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0m2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求Sm的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“大美武汉·诗意江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校3000名学生中的部分学生,提供四个景点选择:A、黄鹤楼;B、东湖海洋世界;C、极地海洋世界;D、欢乐谷.要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

请根据图中提供的信息,解答下列问题:

(1) 一共调查了学生___________人

(2) 扇形统计图中表示“最想去的景点D”的扇形圆心角为___________度

(3) 如果ABCD四个景点提供给学生优惠门票价格分别为20元、30元、40元、60元,根据以上的统计估计全校学生到对应的景点所需要门票总价格是多少元?

查看答案和解析>>

同步练习册答案