分析 易证得△AEH≌△CGF,从而证得EH=GF,同理GH=EF,根据两组对边分别相等的四边形是平行四边形得证.
解答 证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D,AD=BC,
又∵BF=DH,
∴CF=AH,
在△AEH和△CGF中,$\left\{\begin{array}{l}{AE=CG}&{\;}\\{∠A=∠C}&{\;}\\{AH=CF}&{\;}\end{array}\right.$,
∴△AEH≌△CGF(SAS),
∴EH=GF;同理:GH=EF;
∴四边形EFGH是平行四边形.
点评 本题考查了平行四边形的判定和性质、全等三角形的判定和性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
平均数 | 中位数 | 众数 | 方差 | |
甲 | 8 | 8 | 7 | 3 |
乙 | 8 | 8.5 | 9 | 1.5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com